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Abstract 

 

The purpose of this paper is to show a novel approach to automatically generating 

Probabilistic Causal Models (Bayesian Networks (BN)) by applying Natural Language 

Processing (NLP) techniques to a corpus of millions of digitally published news articles in 

which views by different authors are expressed on the future states of economic and financial 

variables, and geopolitical events. The BNs that the authors will show how to derive will 

represent the wisdom-of-the-crowds forward-looking point-in-time views on various variables 

of interest and their dependencies. These BNs are likely to be of interest to asset managers and 

to economists who want to gain a better understanding of the current drivers of an economy 

based upon a rigorous probabilistic methodology. Additionally, in an asset allocation context, 

the BNs the authors derive can be fed to an optimization engine to construct a forward-looking 

optimal portfolio given the constraints of the asset manager (e.g., budget, short constraints 

etc.). The authors demonstrate various automatically derived BNs in a financial context. 

 

THREE KEY TAKEAWAYS: 

 

1- The authors show a novel approach to automatically generating Probabilistic Causal 

Models (Bayesian Networks (BN)) by applying Natural Language Processing (NLP) 

techniques to a corpus of millions of digitally published news articles. 

2- They not only derive the DAG from the text, but also automatically derive the 

conditional probability; the latter is the main contribution of the paper 

3- The BNs are likely to be of interest to asset managers and to economists who want to 

gain a better understanding of the current drivers of an economy based upon a 

rigorous probabilistic methodology 

 

Keywords: NLP, causal graphs, Bayesian Networks, macro-finance, expert elicitation, 

knowledge mining. 

 

 

 



 
 

Bayesian Networks1 (BNs) have proven to be a very useful tool in practice in many 

domains2 because 1) they represent causal knowledge about how different variables interact 

and 2) they are deeply rooted in probability theory and hence well-suited to express uncertainty. 

In other words, BNs, while still firmly grounded in the statistical realm, allow for the 

incorporation of knowledge of “why” things happen i.e., what causes what. For example, we 

know that a crash in stock markets almost surely will cause a spike in implied volatilities, but 

the opposite is not necessarily true. Hence, BNs incorporate causation as a primary concept 

and correlation as a derived one. To use Pearl’s (Pearl (2009)) terminology, casting a treatment 

of a problem in terms of causation will make our judgements about (conditional) 

(in)dependence between variables ‘robust’; will make them well suited to represent and 

respond to changes in the external environment; will allow us to work with conceptual tools 

which are more ‘stable’ than probabilities; will permit extrapolation to situations or 

combination of events that have not occurred in history. 

In Rebonato (2010), BNs are applied to building stress scenarios based on causal reasoning 

when historical data about stress events (e.g., political events, unusual monetary policy etc.) is 

insufficient or absent. The BNs are built based on domain knowledge of which variables to 

include (e.g., are there any omitted variables?) and domain knowledge about the structure of 

the BN i.e., how the modelled variables interact with each other and their conditional 

independence properties. The parameters (probabilities) of the BN are derived from expert 

judgement, cross-sectional market data and other forward-looking data sources, and historical 

data when deemed relevant. This is of significance, for example, to asset managers when they 

aim to obtain an optimized portfolio in which forward-looking views are expressed, especially 

for events that have not been observed in the past. 

As Denev et al (2016) point out, building a BN where more than two variables are at play 

suffers from three sources of uncertainty, namely 1) uncertainty with respect to which variables 

to include in the BN 2) uncertainty with respect to the skeleton of the BN on which two experts 

can have very different opinions, and 3) what data to use to infer the parameters of the BN3. 

Resolving the three sources of uncertainty can sometimes be arduous even for just a few 

variables. A combination of sensitivity analysis, trial-and-error process and domain expertise 

are needed4. Moreover, usually many experts with different backgrounds (e.g., one for each 

variable of interest) are required to come up with a credible model, usually through 

brainstorming sessions. This can a very time-consuming process.  As a result, the model could 

even be obsolete before it is completed since economies could evolve rapidly, especially under 

stress. This is why the uptake of BNs in financial and economic modelling has been limited. 

In this paper, we will show an automatic way to partially, possibly sometimes fully, resolve 

some of the 3 uncertainties and reduce the BN build time to a matter of seconds. We will 

leverage a platform where millions of news articles by different authors are stored daily. The 

philosophy behind the platform is to try to mine knowledge from the broad expanse of human 

 
1 For an introduction to Bayesian Networks please see Koller (2009), Pearl (2009). 
2 For example, medical diagnosis, reliability engineering, software fault prediction and linguistics. See Koller 

(2009) for numerous examples. For examples in the financial context, see Denev (2015). 

 
3 For example, if historical data is used, what is the source of this data (many macroeconomic sources could 

have slightly different information) and what is the time span used to derive the distribution of the modelled 

variables e.g., last year of data, two years etc. 
4 The latter is usually considered to be very subjective and prone to human bias 



 
 

intelligence easily accessible in the world today. Humans are very good at sensing, 

understanding, and describing causal relations. However, a single human brain is not always 

capable of ingesting the full picture. Sometimes getting the right direction of causal influence 

between two variables requires a large number of observations and differing perspectives. By 

using an aggregating platform, however, such knowledge is more likely to be obtained by 

grouping together in ‘the collective brain’ many points of view concerning the causal structure 

of the domain of interest at a given point in time. 

We must say that there exists a body of literature (Sanchez et al, 2004; Moghimifar et al, 

2020) that deals with automatically extracting BNs skeletons from text. However, we have not 

found literature that also showed how to automatically populate BNs with probabilities. We 

consider the latter one of the main contributions of this paper.  

The paper is structured as follows. In Section ‘Data’ we will describe the platform from 

which we will extract the data. How to transform the causal statements from the platform into 

a Directed Acyclic Graph (DAG) – the skeleton of a BN – will be shown in Section ‘Deriving 

the DAG’. We will show how to populate the DAG with probabilities in Section ‘Populating 

the DAG’ together with an optimization procedure in case the extracted probabilities are not 

bona-fide and they do not yield a well-defined Joint Probability Table (JPT). We will discuss 

some practical examples in Section ’Results’. We will conclude in Section ‘Conclusions and 

further work’. 

DATA 

 

Getting a computer to understand natural language in the same way a human speaker 

does has been the “holy grail” of Artificial Intelligence from its very inception. Over the years, 

researchers have scaled back the ambitious goal of achieving “understanding” in ways that 

have now generated the subfield of “Natural Language Processing5” or NLP. NLP essentially 

relies on statistical linguistic data (which is easily gathered these days) to perform many tasks 

of interest in many domains, e.g., construct language models which can be used to, for example, 

predict the next word in an input word sequence. An important NLP task is “information 

extraction” which involves ways of generating structured information, i.e., machine-readable 

data, from ordinary natural language text6. Siphoning out the kind of data needed to generate 

formal representations of causal knowledge contained in news articles or reports is an example 

of this kind of task. 

For the purposes of this paper, we employ data from a proprietary platform that 

automatically analyses news articles to formalize causal links expressed in natural language 

about the forces acting in the geopolitical, financial, and economic world7.  The platform 

ingests about 50,000 texts per day in 24 languages produced by news services such as the 

Boston Globe, the Washington Post or Agence France Press. Over the past 6 years, this has 

resulted in a collection of around 95M texts. These texts are passed through a proprietary 

 
5 To get a point of view on why natural language understanding is so difficult yet seemingly feasible according 

to many researchers see (Ginsberg 2006). 
6 The success of programs such as IBM’s Watson and its descendant applications (see Beller,et. Al, 2016) is 

largely dependent on various forms of this capability. 
7 https://causalitylink.com/ 



 
 

Natural Language Processing (NLP) set of modules that aggregates the resulting structured 

data in an AWS-powered data lake accessible via SQL queries.  

Four types of data types are extracted by the NLP modules and made available in the 

data lake: indicators, trends, events, and causal links.  

Indicators represent all numeric data mentioned in financial texts e.g., the USA GDP 

for a certain quarter, the sales of Tesla Model 3 in China for a specific month, the EBITDA of 

Ford for a specific quarter. With the goal to be able to represent a universal data model in a 

single data structure, each indicator is composed of a Key Performance Indicator (KPI) (such 

as GDP or EBITDA, or ESG measures), and a set of descriptors characterizing the potential 

country, industry, company, and product mentioned in the context of this KPI. The set of KPIs 

and descriptors are part of a large ontology (explicit formal specifications of the terms in the 

domain and relations among them) that has been specifically developed for the application8. 

The ontology also provides a set of coherence checks between KPIs and descriptors that are an 

essential part of the NLP system. For example, GDP only applies to countries, while EBITDA 

only applies to companies. Impossible indicators such as “the GDP of Exxon-Mobil” or “the 

EBITDA of Finland” are avoided through these checks. 

The NLP system also recognizes when statements mention indicators in the past or 

present tense as opposed to the future tense, which is essential to enable detailed comparisons 

of the future vs the known. And when possible, it extracts the span of the indicator, which is 

the duration of the measure of that indicator. Duration is expressed in days. The value 0 

indicates instant measures such as stock-price; 7 is used for weeks for week-to-week 

comparisons; 28 to 31 for months, used for example for car sales; 90 to 92 for quarters, which 

is the most common span for financial measurements of public companies; 365 to 366 for years, 

etc.  

Trends represent the evolution of indicators over a specific period, which is the span of 

the trend. The span of the trend is not to be confused with the span of the underlying indicator. 

For example, one can compare quarterly numbers (Q1 for example) year-over-year, where the 

span of the indicator is 92 and the span of the trend is 365. A trend is associated with a date 

and an offset. The date refers to the time when the article that contained the trend sentence was 

published. The offset refers to the time that was spoken about in the context of the trend. For 

example, a reference made to the last quarter will be associated with an offset of -90. Statements 

made about the future such as ‘…is expected to close the year up by 10%’ is associated with a 

positive offset representing the number of days from the publish date till year end. 

Events9 usually represent non-recurring activities, such as specific mergers and 

acquisitions, natural disasters such as hurricanes and earthquakes, man-made disasters such as 

wars and industrial events, etc. Events are more complex than indicators in that they can relate 

 
8 For some early work on the use of ontologies in an information retrieval and automatic indexing application see 

(Ginsberg 1993). The blackboard architecture at the core of the NLP system leverages the ontology to enable the 

recognition of potentially trillions of indicators that can be represented as combinations of over 1,700 KPIs 

complemented as necessary by one of all the countries in the world, one of 40,000 public companies, one of 1,600 

industries, and one of a rapidly expanding number of products from all these companies.  

 
9 We will not be using Events for this paper 

 



 
 

multiple entities: an acquisition will involve two companies, a war at least two countries, etc. 

Events are recognized through the equivalent of a KPI which what is called the baseEvent, and 

several descriptors that complement the context of the baseEvent. The system currently 

recognizes over 700 different baseEvents. Events have a start date and an end date, which can 

sometimes be in the distant future.  

Causal links represent causal statements made by authors linking a trend, an indicator 

or an event to another trend or another indicator. Statements such as “the increased strength of 

the US dollar led to a decline of the price of commodities” or “every 5% increase in sales of 

the Ford F150 translates into a 10% increase of Ford’s profits” are recognized by the system 

and transformed into causal links between indicators with a direction, a strength and a positive 

or negative correlation sign.  

The automatic extraction of causal statements from natural language texts is a nascent 

field, and the system has an inbuilt bias for precision vs coverage, that is, it only extracts causal 

statements from well-defined forms of statements such as “A is due to B” or “A has led to B” 

rather than by detecting proximity of A and B in a sentence. The complexity of the causal forms 

that are extracted from texts is, however, growing over time. At this point, “A and B led to C” 

is not considered as a valid form. First, such statements are very rare in text. Second, such 

expressions are less precise than the two-variable form. The form “A leads to B and C” is safely 

transformed into two causal links “A leads to B” and “A leads to C”. One can view “a X% 

growth of A leads to a Y% growth of B” as equivalent to “Y/X is the elasticity of B vs A”.  

The above-mentioned structure of the indicators has in part been defined to enable a 

natural generalization of causal links using the taxonomy tree of the descriptors as specified by 

the ontology. For example, it is easy to aggregate individual causal statements between the 

“sales of the different models of Tesla cars in China” and “Tesla Profit” into a single causal 

pair (generalizing along the model descriptor) between the sales of Model Y and Model 3 of 

Tesla in China and its worldwide profits. Or the sales of Tesla worldwide (this time 

generalizing along the geography of the sales of Tesla) and its profits. 

We note that perhaps the most straightforward way to derive a relation between the 

variables from text is to count their co-occurrence in a sentence. However, this co-occurrence 

does not imply causation. For example, a sentence “we think that inflation and gold will rise 

this year” does not indicate a causal relationship. The NLP used in the platform requires an 

explicit human expression of causality to take the co-occurrence into account. The sentence 

“higher inflation tends to pressure gold’s price higher” is a valid example for the (causal) 

relation of inflation impacting gold. The sentence “higher inflation does not tend to pressure 

gold’s price higher” is not counted and finally, a sentence such as “a higher gold price tends to 

push inflation higher” is counted towards the causal relationship of gold impacting inflation 

(and is not counted for the reverse relationship). 

DERIVING THE DAG. 

 

The individual causal statements are stored in the platform as the causal pair (source –

> target), with explicit causal directionality from source to target. This explicit causal 

directionality implies that the causal pair (‘A’ -> ‘B’) is stored separately from the causal pair 

(‘B’ -> ‘A’).  



 
 

An aggregation of the individual causal statements into a graph structure is required for 

the causal links to be used in a BN. A BN is expressed via a Directed Acyclic Graph (DAG). 

The nodes of this graph represent the economic indicators, such as ‘USA GDP’, and the links 

represent the causal relations found between the nodes from the news articles. For a DAG to 

be valid, it is required that there be no loops in the network structure.  

The collection of causal statements we extract from the news articles does not 

necessarily adhere to the acyclic structure, i.e., (different) authors can express both the causal 

pair (‘A’–>‘B’) as well as (‘B’–>‘A’). For example, in the sentence “Due to the demand of the 

popular F-150 truck, Ford had a much larger output in that segment this quarter”, shows the 

(time-stamped) causal pair (‘Ford F150 demand’->’Ford pickup-trucks production’), or 

shorter: (‘Ford demand’->’Ford production’). Another author writes how “the demand will be 

driven by new EV facility that Ford opened”, which translates to (Ford production->Ford 

demand). Furthermore, since the NLP captures statements about causal pairs, nothing prevents 

a loop in a larger structure of nodes.  For example, we can have causal pairs (‘A’->’B’), (‘B’-

>’C’) to start with. The addition of a causal pair like ‘C’->’A’ would generate a loop structure 

and would thus invalidate the DAG. An example would be (‘USA GDP’ -> ‘USA interest 

rates’), (‘USA interest rates’ -> ‘DXY) and (‘DXY -> ‘USA GDP’).  

It is natural to aggregate the individual causal statements to (driver, target) pair and use 

the count of the pair as a weight. Furthermore, this weight can be subject to a maximum time 

span and a decaying importance of older causal statements to adapt the BN to more current 

reasoning. 

In what follows, we describe a step-by-step method to derive a DAG structure from the 

individual causal pairs. 

First, low frequency causal statements are discarded. Such statements may either arise 

from an NLP error or single contrarian opinion. For this paper, a threshold value of 10 is 

chosen. That is: for a causal pair to be taken into consideration, there need to be 10 sentences 

across the whole corpus validly asserting that causal pair.  

A collection of core nodes is selected as primary focus. These could be the factors on 

which a portfolio depends (e.g., rates, inflation, equity indices etc.). For each core node, the 

top n drivers by frequency are collected. The distinct nodes resulting from this query form the 

collection of nodes of the DAG. 

Next, all available causal pairs between the nodes are collected. That is: if in the node 

query above ‘A’ was a core node and ‘B’ was found to be a driver of ‘A’, we collect both the 

causal pairs (‘A’->’B’) and (‘B’->’A’) along with their weights (given that such pair exist in 

the data). An iterative approach adds all the links to the graph by decreasing order of weight. 

Every addition is tested to result in a DAG. If the result is no longer a DAG, that causal pair is 

not considered further in the automatic analysis. However, the decision can be overridden by 

an expert using a Bayesian graph editor thereby ensuring the graph is a DAG by removing 

other elements based on economic reasoning.  

This heuristic results in choosing the higher frequency link as the ‘winning’ link for the 

pair (‘A’->’B’) and (‘B’->’A’), unless cancelled as earlier addition to the graph. For larger 

graphs, this procedure cancels the weakest link of a clique, as this is the lowest frequency pair 

that is added to activate the non-DAG alarm.   



 
 

It may be instructive to understand what the drivers are through a concrete example. 

Table 1 shows the top 3 drivers of the USA inflation rate together with their frequencies as 

extracted from the platform.  

Table 1 Top 3 drivers for the USA inflation rate 

driver target count 

Oil prices USA inflation rate 1,922 

Food products prices USA inflation rate 1,091 

USA GDP USA inflation rate 663 

 

In our approach to generate a DAG, we subsequently collect all available causal pairs. 

We find 12 causal pairs (which is also the maximum number of pairs for 4 nodes. This is due 

to the nature to the tight inter-relation of macro-economic concepts). With the iterative 

approach explained above applied, we end up with a DAG with 6 links. The graph is displayed 

in Figure 1. ‘Oil price’ drives ‘USA inflation rate’ directly, via ‘Food products prices’ and via 

‘USA GDP’, with ‘USA GDP’ being a driver for ‘Food products prices’ as well. 

Figure 1: The DAG resulting from the top 3 drivers of USA inflation rate 

 

The next issue is how to automatically populate the DAG with probabilities. We discuss 

this in the next section. 

POPULATING THE DAG 

 

So far, we have derived the structure of the graph from the text, but not yet populated 

the BN with probabilities. In what follows, we will limit ourselves to Boolean BNs only with 

two states of the variables (Down, Up). This is not a limitation of BNs. In fact, BNs also allows 

incorporation of continuous nodes. We leave this for future research. 

A BN is supplied with two types of probabilities: probabilities for root nodes 

(marginals) and conditional probabilities for any node with incoming links. The latter can be 

of any order, single (one parent), double (two parents), etc.  

We describe the population of the probabilities for the following cases: 



 
 

• Root marginals 

• Single conditional probabilities 

• Of greater order 

 

Probabilities of the root nodes 

 

The root nodes of a BN represent the independent inputs to the network. Probabilities 

of those root nodes are derived from forward-looking trends statements from the texts. For 

example, the sentence “Tesla’s CEO Elon Musk said that the company’s vehicle deliveries in 

2020 would be up 30% to 40% from last year” is captured as a forward looking (up) trend on 

‘Tesla revenue’. As explained in Section ‘Data’, every extracted trend is associated with an 

offset, representing the time horizon of the prediction. In the following, the root node 

probabilities are based on predictions with any time horizon.  The use of forward-looking 

statements with constraints on the time horizon is straightforward. Currently, all forward 

looking statements made in the last 90 days are selected and weighted based on an exponential 

decay with a half-life of 14 to give a larger weight to the more recent forward-looking trend 

statements. Note that the window and half-life parameters of this selection are subjective, and 

the current values are chosen based on a trade-off between stability and recency10. 

Subsequently, the trends are aggregated into a probability by computing the proportion of 

uptrends out of all forward-looking trends. This probability is also referred to as future Positive 

Trend Probability, or PTPf. Table 2 shows such numbers at the time of writing: both ‘Oil price’ 

and ‘USA inflation rate’ will trend up according to the aggregated statements.  

Table 2 Probabilities for the possible root nodes as of March 4 2021 

Cause P(Cause) or PTPf 

Oil price .73 

USA inflation rate .80 

 

Bivariate marginal and single conditional probabilities 

 

Let us start with an example of a network with two nodes only. Let those be the price 

of oil (‘Oil price’) and the inflation rate in the USA (‘USA inflation rate’). For the pairs (‘Oil 

price’ -> ‘USA inflation rate’) and (‘USA inflation rate’ -> ‘Oil price’), we observe 1922 and 

581 cases, respectively. In the procedure to generate a DAG, we would cancel the addition of 

(‘USA inflation rate’ -> ‘Oil price’) to the BN, as this would no longer make it a DAG. We 

present both cases to substantiate our logic.  

In Tables 3 and 4, we see the collection of causal expressions in text broken out into 

how the authors express the direction of trends in both cause and target11. An example sentence 

of Table 3 where either trend direction is discussed as up-trend is: “We saw an uptick in 

inflation rate mainly due to the increased oil prices”. In Table 4, the reverse relation is 

 
10 Sensitivity analyses can be performed to assess the robustness with respect to these parameters. 
11 We will refer to the quantities extracted from the platform as “observed” 



 
 

discussed, where ‘USA inflation rate’ is the cause (or driver) of the ‘Oil price’. An example of 

a statement where both the trend of the cause and the target are down is: ‘’The inflation rate 

being down this quarter even further supressed the oil prices.” From the direct impact of ‘Oil 

price’ on the price of any oil derived product (i.e., plastic) and transportation costs, it may be 

economically more justified that oil drives inflation in a more direct way than the reverse 

relation. We find it thus acceptable and necessary in the automatic generation of this DAG to 

only consider the most frequently mentioned link and point out the ability for this be to 

overridden by an expert. 

 

Table 3 The jointly observed counts and (probabilities) of trends and causal reasoning for 

the pair (‘Oil price’- > ‘USA inflation rate’) 

 Target: USA inflation rate  

Down Up 

Cause: Oil price Down 421 (0.22) 182 (0.09) 

Up 264 (0.14) 1,055 (0.55) Total 

 1,922 (1) 

 

Table 4 The jointly observed counts and (probabilities) of trends and causal reasoning for 

the pair (‘USA inflation rate’ -> ‘Oil price’) 

 Target:  Oil price  

Down Up 

Cause: USA inflation rate Down 139 (0.24) 60 (0.10) 

Up 39 (0.07) 343 (0.59) Total 

 581 (1) 

 

We refer the interested reader to Appendix A, Table 16 which provides three example 

sentences for every combination of up and down for the driver-target pairs displayed in Table 

1. The sentences have not been cherry-picked – and thus may be incorrectly classified due to 

NLP misinterpretation. This ‘honest’ view may give the reader an appreciation for the difficulty 

of the NLP problem and forewarn that the resulting BNs may be affected due to such NLP 

errors as not all sentences are curated by hand to be included or not in the estimation procedure.   

It may be instructive to see both tables from the conditional probability perspective of 

the BN. In the simplest two node BN, we have that the joint probability of cause and effect 

factorizes as follows: 

𝑃(cause,effect) = 𝑃(cause)𝑃(effect|cause)   (1) 

The term P(effect|cause) which is calculated from Table 3 is shown in Table 5 as 

P(‘USA inflation rate’|’Oil price’). With oil prices up, it is more than twice as likely that the 

inflation rate is up compared to when the oil price is down. This confirms our intuition. i.e., it 

would be odd to suggest the reverse, namely, that oil prices being up lead to a low inflation rate 

but nevertheless there are authors who describe that relation, for example as ‘inflation 

slowdown despite the spike in gasoline prices’. Even for the reversed causal relation, shown in 



 
 

Table 6, the conditional probabilities make sense: an inflation rate being up, will drive the oil 

prices up (oil is a commodity and thus will become more expensive relative to money). 

Table 5 Conditional probability table for the pair (‘Oil price’ -> ‘USA inflation rate’) 

 Target: USA inflation rate  

Down Up  

Cause: Oil price Down 0.70 0.30 1 

Up 0.20 0.80 1 

 

Table  6 Conditional probability table for the pair (‘USA inflation rate’ -> ‘Oil price’) 

 Target: Oil price  

Down Up  

Cause: USA inflation rate Down 0.70 0.30 1 

Up 0.10 0.90 1 

 

At this point, we point out the following relation for between odds ratio and the 

probabilities in bivariate tables: 

Odds ratio (T,C) =
P(C = up, T = up)

P(C = up, T = down)
 [
P(C = down, T = up)

P(C = down, T = down)
]
−1

(2) 

The odds ratio can be thought of as a single measure summary for how much leverage 

the cause variable has over the target variable. Odds ratios larger than one indicate a positive 

relation between the cause and the target while odds ratios smaller than one indicate a negative 

relationship. We will later use the odds ratios to encode the strength of the marginal 

(cause,effect) pair in the visualizations. Using the probabilities in Table 3, the odds ratio for 

the relation ‘Oil price’ to ‘USA inflation rate’ takes the value 9.3, indicating a strong positive 

relation between the ‘Oil price’ and ‘USA inflation rate’. 

At this point we have all the elements to calculate the Joint Probability Table (JPT) for 

the two node model P(‘Oil price’)P(‘USA inflation rate’|’Oil price’). The forward-looking 

probability of the Oil price was given in Table 2 and along with the conditional table displayed 

in Table 5, this yield the JPT presented in Table 7.  

Table 7 JPT for the two-node example (‘Oil price’ -> ‘USA inflation rate’) 

 Target: USA inflation rate  

Down Up 

Cause: Oil price Down 0.19 0.08 

Up 0.15 0.58 Total 

 1 

 

The procedure described above implicitly derives the conditional probability table from 

the observed bivariate probability table. This step can be called the ‘learning phase’ as it learns 

the causal relationship between variables. The observed bivariate probability table is factored 

into a root node probability and a conditional table. The ‘scoring’ phase of the algorithm takes 



 
 

place when an expert supplies new values for the root node (e.g., the forward-looking 

probabilities (PTPf)), which then yields the JPT based on the relations (the conditional 

probability table) from the learning phase. This is useful when marginalized to the effect 

variable.  The JPT in Table 7 marginalized to P(‘USA inflation rate’=up) equals 0.67 which 

shows us the future of the world as extracted from text. The USA inflation rate, of course, 

depends on more factors than Oil price alone, which we explore in Section ‘Results’.  

Multiple causes targets 

 

In this section, we will explain why in our case an optimization procedure is required 

to obtain a well behaved JPT for a BN. A BN factorizes according to the chain formula: 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑉) =∏𝑃(𝑥𝑖|parents(𝑥𝑖))

𝑉

𝑖=1

(3) 

 A BN with one target having three independent causes hence factorizes as: 

𝑃(𝑇, 𝐶1, 𝐶2, 𝐶3) = 𝑃(𝐶1)𝑃(𝐶2)𝑃(𝐶3)𝑃(𝑇|𝐶1, 𝐶2, 𝐶3) (4) 

 

The data provided by the platform yields P(T,C1), P(T,C2), and P(T,C3). The 

probabilities of the root nodes P(C1), P(C2) and P(C3) are implied by the observed bivariate 

tables. However, the required P(T|C1,C2,C3) isn’t readily available. Let us treat the problem in 

more detail. 

Typically, a BN is supplied with conditional probabilities given by experts. It is 

doubtful how an expert would be able to pinpoint the higher order conditional probabilities 

easily. In fact, the conditional probability table of P(T|C1,C2,C3) needs 8 probabilities. At least 

in the financial texts, sentences that discuss two causes and a target are virtually absent (an 

example of such sentence would be: “the increase in oil price drives inflation higher, especially 

in an environment where the interest rates are declining”). While the situation with two causes 

and a target could be expressed in human language, adding more causes quickly becomes too 

complex. The question that arises is then - if experts are not able to express such relations in 

language, are they valid to use to supply the conditional probabilities to fully specify a BN? 

How to derive conditional probabilities of any order given other supplied information and 

obtain a bona fide JPT (i.e., that sums up to 1 and all the joint probabilities are in [0,1]) is a 

problem already treated in Rebonato et al. (2014)12. 

In our specific example, the key is to reconstruct P(T|C1,C2,C3) from the three bivariate 

probabilities tables P(T,C1), P(T,C2), and P(T,C3). This is not a straightforward task as, in 

general, there is no exact analytical solution. In fact, the parameters supplied provide fewer 

parameters than required. For example, the BN in Equation 4 requires 3 marginal and 23 

elements of trebly conditioned probability, adding up to 11 parameters. The supplied 

information with the bivariate (source,target) tables counts are 3 parameters for each link Cx-

 
12 Other approaches to simplifying complex conditional probability tables exists such as e.g. noisy-or (see Koller 

(2009), Chapter 5). However, what we will present here is more appropriate and consistent with the information 

we extract from the platform. 



 
 

>T (i.e., P(T=Up,Cx=Up), P(T=Up,Cx=Down) P(T=Down,Cx=Up)13 ), adding up to a total of 

9 parameters. In other words, we supply less information than the JPT formula requires. By 

adding more causes, the difference in supplied and needed parameters can get increasingly 

larger. This means that there will be multiple solutions for P(T|C1,C2,C3). We can find those 

through an optimization procedure where we will choose the most conservative BN from the 

set of multiple solutions according to criteria that we will describe.  

A problem can arise when a solution does not exist. This could happen if the supplied 

probabilities, although bona fide probabilities i.e. in the interval [0,1], do not yield a valid 

P(T|C1,C2,C3). In that case we need to find the closest possible bivariate probabilities that yield 

a bona fide P(T|C1,C2,C3). 

We will show how to solve this problem through an optimization procedure in the next section. 

 

Deriving a well-defined JPT 

 

The JPT of our BN with V vertices Vϵ{x1,x2,…xV}  can be represented as a table with 

2V rows and V columns containing all combinations of ‘up’ and ‘down’ along with a column 

containing the probability. We refer to the JPT without the probability column as configuration 

matrix, where ‘up’ is replaced by 1 and ‘down’ is replaced by 0. This table is shown in  

Appendix B (Table 17). 

The edges E of the BN is the collection of causal links. For example, for the BN 

represented by Equation 3, these are: Eϵ{(C1,T), (C2,T), (C3,T)}, with every edge associated 

with its own set of 4 probabilities [pdown,down, pdown,up, pup,down, pup,up](Cx,T) representing the 

probabilities of the associated causal sentences, such that every ∑ 𝑝𝑖𝑗 = 1𝑖,𝑗  for every edge. 

Note, in the computation of the probabilities from the observed cell counts, the Haldane 

correction (Haldane, 1956) is applied (where the value of 0.5 is added to every cell) to deal 

with potential zero counts. The collection of these probabilities for all edges E can be presented 

in a linear form as a list of probabilities p with length S. We will refer to the vector p as observed 

edge probabilities. 

In the previous section, we discussed how a single set of observed edge probabilities p 

can give rise to multiple solutions for a BN. To solve this issue and find a unique solution we 

start by first fitting a log-linear model (Agresti, 1980) to the data14. The parameters of a log-

linear model describe the main effects and interaction effects in a multidimensional 

contingency table. For example, a three-way contingency table with variables A, B and C can 

be decomposed into three main effects (A, B, C), three two-way interaction effects (AB, AC, 

BC) and one three-way interaction effect (ABC). It is common to restrict the parameters of the 

log-linear model such that a lower rank JPT that describes the data more parsimoniously is 

obtained. For the three-way contingency table mentioned above, for example, one could restrict 

all interaction effects to be zero. Estimating the log-linear model under such restriction yields 

estimated cell probabilities where P(A,B,C)= P(A)P(B)P(C) holds i.e., the cell probabilities are 

 
13 The closure relation holds: P(T=Down|Cx=Down) = 1- P(T=Up,Cx=Up) + P(T=Up,Cx=Down) + 

P(T=Down,Cx=Up) 
14 For a more in-dept treatment of log-linear models we refer the reader to Vermunt, 2005. 



 
 

the product of single dimensional marginals. This is the most restrictive model that still is 

interesting.  

In our case, we only observe bivariate tables for the edges in the BN. It therefore makes 

sense to ‘reconstruct’ the full JPT, yet with only interaction terms allowed that correspond to 

the observed bivariate tables. This ensures the resulting JPT will not contain higher order 

associations beyond what can be derived from the observed edges. We note that the sufficient 

statistics of this log-linear model are exactly the observed bivariate tables.  We will refer to this 

JPT as JPTLL to indicate that this is a valid JPT, although derived through a different 

parameterization than the typical one of a BN. Subsequently, we use JPTLL to estimate JPTBN, 

which will now have a single solution, which is the most parsimonious solution that can give 

rise to observed marginals under the parametrization of a BN. 

The JPTLL for the variables in Equation 4, by allowing the main effects and only second 

order interaction terms corresponding to the observed edge probabilities, is given by: 

𝐽𝑃𝑇𝐿𝐿 = 𝑃(𝐶1, 𝐶2, 𝐶3, 𝑇)=
𝑒

μ+𝜆𝑖
𝐶1+𝜆𝑗

𝐶2+𝜆𝑘
𝐶3+𝜆𝑙

𝑇+𝜆𝑖,𝑙
𝑇𝐶1+𝜆𝑗,𝑙

𝑇𝐶2+𝜆𝑘,𝑙
𝑇𝐶3

∑ 𝑒
μ+𝜆

𝑖
𝐶1+𝜆

𝑗
𝐶2+𝜆𝑘

𝐶3+𝜆𝑙
𝑇+𝜆

𝑖,𝑙
𝑇𝐶1+𝜆

𝑗,𝑙
𝑇𝐶2+𝜆𝑘,𝑙

𝑇𝐶3

𝑖,𝑗,𝑘,𝑙

(5) 

with the constraints that the terms λ sum to zero over any subscript such as ∑ 𝜆𝑖
𝐶12

𝑖=1 =

0 and ∑ 𝜆𝑖,𝑙
𝑇𝐶12

𝑖=1 = ∑ 𝜆𝑖,𝑙
𝑇𝐶1 =2

𝑙=1 0 etc. We refer the interested reader to Appendix B for more 

background information regarding the log-linear models and their parameter restrictions. While 

the above equation gives insight in which interaction terms are fitted, its matrix notation variant 

is more convenient: 

𝐽𝑃𝑇𝐿𝐿 =
𝑒Χθ

∑𝑒Χθ
(6) 

where the exponentiation is taken elementwise. The model matrix X contains known constants. 

For example, the term P(C1=up,C2=down, C3=up, T=up) in the JPTLL is associated with the 

parameters μ+𝜆𝑢𝑝
𝐶1 + 𝜆𝑑𝑜𝑤𝑛

𝐶2 + 𝜆𝑢𝑝
𝐶3 + 𝜆𝑢𝑝

𝑇 + 𝜆𝑢𝑝,𝑢𝑝
𝑇𝐶1 + 𝜆𝑑𝑜𝑤𝑛,𝑢𝑝

𝑇𝐶2 + 𝜆𝑢𝑝,𝑢𝑝
𝑇𝐶3  which equals μ+𝜆𝑢𝑝

𝐶1 −

𝜆𝑢𝑝
𝐶2 + 𝜆𝑢𝑝

𝐶3 + 𝜆𝑢𝑝
𝑇 + 𝜆𝑢𝑝,𝑢𝑝

𝑇𝐶1 − 𝜆𝑢𝑝,𝑢𝑝
𝑇𝐶2 + 𝜆𝑢𝑝,𝑢𝑝

𝑇𝐶3  and hence the corresponding row in model 

matrix X equals [1,1,-1,1,1,1,-1,1]. 

The JPTLL can be marginalized such that the result corresponds to the observed edge 

probabilities p. For example, for the relation (C1, T) in Equation 4 holds:  𝑃(𝐶1, 𝑇) =
∑ 𝑃(𝐶1, 𝐶2, 𝐶3, 𝑇)𝐶2,𝐶3 . The weights of this linear combination of the JPTLL can be collected in 

a matrix M taking the value 1 where the element of the JPTLL is contained in the bivariate 

marginal term is being calculated from the JPT and zero otherwise.  

We aim to find parameters θ in a minimization procedure such that the following holds: 

𝑝 ≅ 𝑀
𝑒Χθ

∑𝑒Χθ
(7) 

At this point, one may ask why we do not simply minimize the likelihood of the log-

linear model. The answer lies in the possible (and likely) inconsistency of the observed edge 

probabilities. For the example, the three observed probability tables P(Cx,T) each contain an 



 
 

implied marginal T, and across the three tables, those marginals do not need to be consistent. 

As such, the minimization procedure we will show aims to find a single log-linear parameter 

for T (and any interaction term parameters that contains T) such that the estimated marginal T 

is on average the nearest to the three observed versions and yields a well-defined JPTLL. 

Once we obtain the JPTLL, we follow Rebonato et al. (2014) and choose parameters for 

the BN such that we minimize the distance between the JPTLL and the JPTBN. The right-hand 

side of Equation 3 shows that the BN contains V independent probability terms, which we 

denote as the parameter vector 𝛾. In the case of Equation 4 (one target and three causes) this 

means 11 independent terms – one for each root node and eight for the trebly conditioned 

probability table.  

Recall that every term in a BN has its complement. In our binary case, P(A), or more 

explicitly expressed as P(A=1) has a complementing term P(A=0) which equals 1-P(A=1). For 

conditional terms, this also holds: P(A=1|B=0,C=1) has complementing term P(A=0|B=0,C=1) 

which equals 1- P(A=1|B=0,C=1). We construct a vector 𝛾′ which contains all the 

instantiations15 of the independent terms of 𝛾, including their complements. 

We can express the relation between the JPTBN and the parameters 𝛾 of the BN via a 

model matrix A such that when matrix A multiplies the vector log (𝛾′), it yields a vector whose 

components are the logarithm of the probability associated with each of the states represented 

by the configuration matrix. Every column of the matrix A corresponds to a component of the 

BN and is set to one where the configuration matrix equals the state described by the component 

and zero otherwise. For example, the column of A corresponding to term P(T=1|C1=1, 

C2=0,C3=0) is set to one for the states in the configuration matrix where C1=1,C2=0,C3=0,T=1 

and zero otherwise. Through this notation, we can express the joint probability vector as: 

𝐽𝑃𝑇𝐵𝑁 = 𝑒𝐴 ln(𝛾′) (8) 

Note that both the exponentiation and the logarithms are taken elementwise.  

We now have all components for the optimization. The loss function that jointly 

optimizes the parameters of the log-linear model and the BN16 has the following form: 

𝐿(θ, 𝛾) =∑(𝑝𝑠 − [𝑀
𝑒Χθ

∑𝑒Χθ
]
𝑠

)

2

+

𝑆

𝑠=1

∑([
𝑒Χθ

∑𝑒Χθ
]
𝑟

− [𝑒𝐴 ln(𝛾′)]
𝑟
)

2

,

2𝑉

𝑟=1

(9) 

where the first term in the optimization procedure yields a JPTLL with no more dependency 

than can be found in the observed edge probabilities, while the second term seeks to find the 

parameters for a BN that are as close as possible to the JPTLL. 

In summary, the minimization procedure ensures the obtained BN has its parameters 

based on a JPTLL that contains no more information than can be available from the data 

acquisition procedure and is well defined. We will apply this procedure in the next section.  

 
15 An instantiation of a term, say, P(T|C1,C2) means setting the values in this term to a set of values e.g. 

P(T=Up|C1=Up,C2=Down). 
16 In practice, this optimization is done in seconds to minutes using the Scipy ‘minimize’ library for networks up 

to ~15 nodes (a JPT with roughly 32K rows) on an AWS ml.t2.large instance (with 2 vCPU and 8 GiB RAM).  



 
 

RESULTS 

 

Let us go back to the BN displayed in Figure 1 and refer to it as ‘Three driver USA 

inflation rate model’. Table 8 displays the 24 observed edge probabilities that the model is 

supplied with in order of decreasing odds ratio. Note that the odds ratios are not supplied to the 

BN but are just presented to provide insight in the link strength and are computed per Formula 

2. According to the experts, the relation for ‘Food products prices’ and ‘USA inflation rate’ is 

the strongest relation among the causal pairs mentioned for this small model. The bivariate 

probability table for ‘Oil price’ and ‘USA inflation rate’ was also presented in Table 3. 

Table 8: Observed edge probabilities and odds ratios for the Three driver USA inflation rate 

model 

Driver Target Down, 

down 

Down, 

up 

Up, 

down 

Up, 

up 

Odds 

ratio 

Food products prices USA inflation rate 0.28 0.06 0.10 0.57 27.2 

USA GSP Food products prices 0.47 0.03 0.22 0.28 23.1 

Oil price Food products prices 0.19 0.14 0.05 0.62 17.1 

Oil price USA inflation rate 0.22 0.09 0.14 0.55 9.3 

Oil price USA GDP 0.35 0.32 0.12 0.20 1.8 

USA GDP USA Inflation rate 0.08 0.20 0.18 0.54 1.3 

 

In Figure 2, we present the scatter plot of the 24 observed edge probabilities versus their 

fitted counterparts. The observed edge probabilities are adjusted as little as possible, yet in a 

way that they yield a valid BN. As the causal expressions are collected from thousands of 

authors and ten-thousands of different articles, our impression is that the supplied probabilities 

are surprisingly coherent. 

Figure 2: Observed edge probabilities (x-axis) vs. the fitted probabilities (y-axis) for the three 

driver USA inflation ratio model in Figure 1. 

 

 



 
 

The most basic result of a BN are the marginal probabilities obtained by summing the 

rows of the JPT according to the marginalization formula for each node v: 𝑃(𝑣𝑖) =

∑ 𝑃(𝑣1, … , 𝑣𝑖 , … , 𝑣|𝑉|)𝑣1,…,𝑣|𝑉|≠𝑣𝑖 
. 

In Figure 3, the marginal probabilities of the JPT are displayed as percentages in the nodes of 

the BN. Additionally, the marginal probabilities are used to color the nodes. Probabilities 

smaller than 0.5 are increasingly red; around the value 0.5 the node color is white and for larger 

probabilities the node color is increasingly green.  

‘Oil price’ is the single root node and is supplied with the forward-looking probability 

displayed in Table 2. The resulting ‘USA inflation rate’ is now at 75% compared to the 67% 

in the two-node model presented in Section ‘Bivariate marginal and single conditional 

probabilities’.  

Apart from the single variable marginals probabilities, it is useful to inspect the 

bivariate marginal probabilities from the fitted JPT. The fitted odds ratios determine the 

thickness and color of the edges in Figure 3. The stronger the relation, the thicker the edge. The 

color shows if a relation is negative (increasingly red when stronger), positive (increasingly 

green when stronger) and white if an edge the fitted odds ratio is near 1. This representation in 

the graph facilitates a quick understanding of the relationships, something that is known to be 

complex for the traditional visualization of BNs.  

Figure 3 The graph of the Three driver USA inflation rate model 

 

 

With the understanding of how to read the resulting graphs, we now turn to more 

complex examples. For this demonstration we choose three core nodes: ‘Gold price’, ‘Oil 

price’ and ‘USA inflation rate’. 

The link between ‘Oil price’ and ‘USA inflation rate’ was discussed in Section 

‘Bivariate marginal and single conditional probabilities’.  Upfront the relation of either 

indicator to ‘Gold price’ is not immediately known. Would ‘Oil price’ drive ‘Gold price’ 

(because its production requires oil)? Or maybe ‘USA inflation rate’ drives ‘Gold price’ 

(because gold is used as a protection against inflation) and hence the effect of ‘Oil price’ on 

‘Gold-price’ is mediated by ‘USA inflation rate’? We will let the platform find the prevailing 

narrative at the time of writing.  



 
 

For the three core nodes, we will build two models 1) every node will be allowed to 

have a single driver 2) every node will be allowed to have two drivers. While larger models are 

possible, inspection of (too) large graphs does not benefit the analysis. We will, however, 

present the numerical results behind such larger graphs. 

 

One driver per code node 

 

The data query that retrieves the top single driver per core node results in 5 unique 

nodes and 20 possible edges. The final DAG contains 9 edges and thus 9*4=36 probabilities to 

be fitted. Figure 3 shows the observed probabilities and the fitted probabilities under the BN 

when using the procedure described in Section ‘Deriving a well-defined JPT’. When the fitted 

probabilities are transformed into odds ratios, we observe from inspecting the colors of the 

links in Figure 4 that every relation in the network conforms our intuition.   

Figure 3 Observed edge probabilities (x-axis) vs fitted probabilities (y-axis) for the 1 driver 

per core node model. 

 

Figure 4 The graph of the single driver per core node model. 

 

 



 
 

Earlier, we wondered how ‘Gold price’ would be related to the other two core nodes. 

Both ‘Oil price’ and ‘USA inflation rate’ are drivers for ‘Gold price’, ‘Oil price’ being the 

weaker driver. In addition, we observe how ‘DXY’ (the US dollar against a basket of 

currencies) has a strongly negative impact on ‘Gold price’. When ‘DXY’ goes up, ‘Gold price’ 

goes down. This is in line with intuition. In fact, when the value of the dollar increases relative 

to other currencies around the world, the price of gold tends to fall in USD terms. It is because 

gold becomes more expensive in other currencies. The negative relation between ‘DXY’ and 

‘Oil price’ shows that a strong dollar makes the oil price cheaper. Earlier we discussed the 

relation between ‘Oil price’ and ‘USA inflation rate’. In Figure 4, we observe how both factors 

have a common driver: ‘Oil production’. Higher ‘Oil production’ drivers ‘Oil price’ down and 

‘USA inflation rate’ up.  

Table 9 displays the JPT marginalized to the three core nodes. The future scenario 

where both ‘Gold price’ and ‘Oil price’ are down and ‘USA inflation rate’ is up is the most 

unlikely scenario, while the most likely scenario is that all three variables are up. 

Table 9 The JPT for the single driver per core node model 

Gold 

price  

Oil 

price 

USA inflation 

rate 

Probability 

down down down           0.20  

down down up           0.00  

down up down           0.04  

down up up           0.09  

up down down           0.12  

up down up           0.15  

up up down           0.05  

up up up           0.35  

 

Two drivers per core node 

 

The data query that retrieves the top two drivers per core node results in 8 unique nodes 

and 56 possible edges. The final DAG contains 20 edges and thus 20*4=80 probabilities to be 

fitted. Figure 5 shows the observed probabilities are reasonably close to the fitted probabilities.  



 
 

Figure 5 Observed edge probabilities (x-axis) vs fitted probabilities (y-axis) for the two 

drivers per core node model 

 

In Figure 6, the graph of the BN is shown. While the experts indicated collectively a 

link between ‘DXY’ and ‘Oil production’ with an observed odds ratio of 1.6, the model fitted 

an odds ratio of 1.03, practically indicating no direct relation. For purposes of readability this 

link is not displayed in the graph. The direct link between ‘DXY’ and ‘USA inflation rate’ also 

a weak one with an odds ratio of 1.15. The influence of ‘DXY’ on ‘USA inflation rate’ happens 

indirectly via ‘Oil price’ and ‘Food product prices’. If the dollar gets weaker, either factor will 

increase. In turn, both ‘Food product prices’ and ‘Oil prices’ push ‘USA inflation rate’ higher.  

Figure 6 The graph of the two drivers per core node model 

 

Reading DAGs with more and more drivers becomes increasingly difficult but before 

‘using’ the BN built in this way every link should be inspected against economic common 

sense. Indeed, we acknowledge that economic considerations and review are needed to curate 

the graph to a fully acceptable BN that can be used in practice.  Nevertheless, this paper 

demonstrates how a large part of the graph creation and population is possible in a fast way 

through recent advances in NLP. A network of the size of the one in Figure 6 could require 

many days if relying only on experts’ input. 



 
 

Another question is if adding more links helps to better pin down the probability 

distribution of the core nodes under consideration. We can check this by performing some 

sensitivity analyses. In Table 10 we present the progression of the marginal probabilities of the 

nodes for a series of “sub-models” starting from 0 links to the maximum number of links. Note 

that so far, we have always presented the models with the maximum number of links.  

Table 10 The evolution of the marginal probabilities when adding more links to the two 

drivers per core node model 

Node 0 5 10 15 18 19 20 

DXY 0.61 0.61 0.61 0.61 0.61 0.61 0.61 

Food products prices 0.67 0.67 0.70 0.62 0.58 0.58 0.58 

Gold price 0.58 0.46 0.60 0.58 0.61 0.61 0.61 

Metals and mining prices 0.69 0.69 0.69 0.48 0.51 0.50 0.49 

Oil demand 0.75 0.45 0.45 0.49 0.43 0.42 0.42 

Oil price 0.73 0.49 0.50 0.51 0.52 0.52 0.52 

Oil production 0.55 0.55 0.55 0.55 0.42 0.41 0.35 

USA inflation rate 0.80 0.62 0.63 0.61 0.64 0.64 0.57 

 

We observe a stabilization of the results when adding more and more links to the model 

which is reassuring. We present the JPT for the core nodes: ‘Gold price’, ‘Oil price’ and ‘USA 

inflation rate’ in Table 11 as we increase the number of links. 

Table 11 The evolution of the JPT when adding more links to the two driver per core node 

model 

Gold 

price 

Oil 

price 

USA 

inflation 

rate 

0 5 10 15 18 19 20 

down down down 0.02 0.17 0.12 0.21 0.20 0.22 0.26 

down down up 0.09 0.10 0.09 0.05 0.05 0.04 0.01 

down up down 0.06 0.03 0.01 0.02 0.01 0.01 0.01 

down up up 0.24 0.23 0.17 0.14 0.13 0.12 0.11 

up down down 0.03 0.15 0.19 0.12 0.12 0.09 0.10 

up down up 0.13 0.09 0.10 0.10 0.11 0.13 0.11 

up up down 0.08 0.02 0.04 0.03 0.03 0.04 0.06 

up up up 0.34 0.20 0.27 0.32 0.35 0.35 0.34 

 

We notice that also the JPT is pretty much stable. This is another type of sensitivity 

analysis which shows the robustness of our procedure. A scenario where all three core nodes 

are up, is estimated to be the most likely scenario with probability of 34% in the model with 

20 links. The second most probable scenario is all the core nodes down with probability of 

26%. The fact that the most likely scenarios are either everything up or everything down 

confirms our intuition of the close relation between the three indicators. Two scenarios (1%) 

are the least probable: the scenario where ‘Gold price’ =down, ‘Oil price’ = down and ‘USA 

inflation rate’ = up and the scenario where ‘Gold price’ =down, ‘Oil price’ = up and ‘USA 

inflation rate’ = down. Compare this with Table . We see that the ‘all up’ state has very close 



 
 

probability to the one in Table , while the ‘all down’ state has slightly increased from 20% to 

26% because of the introduction of an additional second driver. 

Next, we investigate the stability of the JPT under (non-biased or random) NLP errors 

and article inclusion changes. We address this by performing a parametric bootstrap on the two 

drivers per core node model as follows: for the root nodes, we sample 1,000 times from a 

binomial distribution Bin(N,π) with N set to the (rounded) weight corresponding to the root 

node at hand and π set to the observed PTPf of the root node. For the observed edge 

probabilities, we sample 1,000 times from a multinomial distribution Multi(N, π), with N set 

to the (rounded) weight associated with the observed edge probabilities and π  set to the vector 

of observed edge probabilities π = [down_down, down_up, up_down, up_up] for the edge at 

hand. The samples for both the root nodes as well as the observed edge probabilities are 

subsequently transformed back into the probability domain. We thus obtain 1,000 new dataset 

that are perturbed versions of the observed dataset where the perturbation is governed by the 

sample fluctuations of the given distributions. Subsequently, we fit 1,000 BNs and collect the 

5th, 50th and 95th percentile of the distribution of the marginal probabilities as well as the same 

percentiles from the distribution of the JPTs for the core nodes: ‘Gold price’, ‘Oil price’ and 

‘USA inflation rate’. 

Table 12 displays the results of the bootstrapped data for the marginal probabilities. 

The column ‘Est’ displays the estimates based on the original dataset for reference. The median 

probabilities of the replicated data are nearly identical to the estimates based on the original 

dataset. The small spread between the 5th and 95th percentiles demonstrate that one would not 

draw different conclusions if the data collection had turned out slightly different due to normal 

sample fluctuations.  

Table 12 Percentiles of the distribution of marginal probabilities for the bootstrapped data of 

the two driver per core model 

Node Est 5% 50% 95% 

DXY 0.61 0.58 0.61 0.63 

Food products prices 0.58 0.54 0.58 0.62 

Gold price 0.61 0.57 0.61 0.64 

Metals and mining prices 0.49 0.45 0.50 0.56 

Oil demand 0.42 0.37 0.42 0.46 

Oil price 0.52 0.49 0.52 0.55 

Oil production 0.35 0.30 0.36 0.43 

USA inflation rate 0.57 0.53 0.57 0.60 

 

Table 13 displays the results of the bootstrapped data for JPTs for the core nodes: ‘Gold price’, 

‘Oil price’ and ‘USA inflation rate’. The column ‘Est’ displays the estimates based on the 

original dataset for reference. The median probabilities of the replicated data show only slight 

differences compared to the estimates based on the original dataset. The small spread between 

the 5th and 95th percentiles demonstrate that the conclusions with respect to the JPT would not 

change if the data collection had turned out slightly different due to normal sample fluctuations. 



 
 

 

Table 13 Percentiles of the distribution of the JPT of the core nodes for the bootstrapped data 

for the 2 drivers per core model 

Gold 

price  

Oil 

price 

USA 

inflation 

rate 

Est  5% 50% 95% 

down down down 0.26 0.20 0.24 0.27 

down down up 0.01 0.00 0.02 0.06 

down up down 0.01 0.01 0.03 0.05 

down up up 0.11 0.07 0.10 0.13 

up down down 0.10 0.07 0.10 0.14 

up down up 0.11 0.07 0.11 0.15 

up up down 0.06 0.03 0.06 0.09 

up up up 0.34 0.30 0.34 0.37 

 

Finally, we present Tables 14 and 15 to demonstrate the effect of adding more drivers 

per core node. The resulting graphs quickly become complex to read and we will not show 

them. While such larger networks also can be used in practice, we note that both the marginal 

probabilities as well as the probabilities of the JPT of the core nodes are sufficiently similar to 

the two-drivers-per-core-node model, which gives confidence the smaller and more 

interpretable networks could yield robust results. For clarity: the model ‘PTPf implied’ is BN 

with the three non-connected core nodes. Their values are supplied by the forward-looking 

probabilities and no fit is needed. The resulting JPT for this model is simply the multiplication 

of the root node probabilities P(‘Gold price’, ’Oil price’, ’USA inflation rate’)=P(‘Gold 

price’)P(‘Oil price’)P(‘USA inflation rate’). 

Table 14 Marginal effects for the core nodes for models with increasing number of drivers 

per core node 

 

 

Table 15 The JPT of the core nodes for models with increasing number of drivers per core 

node 

Gold 

price  

Oil 

price 

USA 

inflation 

rate 

PTPf 

implied 

1 

driver 

2 

drivers 

3 

drivers 

4 

drivers 

5 

drivers 

down down down 0.02 0.20 0.26 0.25 0.22  0.26 

down down up 0.09 0.00 0.01 0.05 0.04  0.06 

down up down 0.06 0.04 0.01 0.04 0.06  0.05 

down up up 0.24 0.09 0.11 0.09 0.13  0.09 

up down down 0.03 0.12 0.10 0.09 0.07  0.11 

Node PTPf 1 driver 2 drivers 3 drivers 4 drivers 5 drivers 

Gold price 0.59 0.76 0.61 0.57 0.55 0.55 

Oil price 0.73 0.53 0.52 0.48 0.54 0.49 

USA inflation rate 0.80 0.59 0.57 0.60 0.58 0.51 



 
 

up down up 0.13 0.15 0.11 0.12 0.12  0.08 

up up down 0.08 0.05 0.06 0.03 0.06  0.07 

up up up 0.34 0.35 0.34 0.33 0.30  0.28 

 

Finally, we will show a real-world test to measure the success of a fit network. For this 

purpose, we built a series of BNs centred around the price of gold. More specifically, for the 

date range Jan 1, 2018 – Oct 14, 2021, we query the data source for the top 4 drivers of ‘Gold 

price’ for every day in the period mentioned. Note that this allows for the model to contain 

different drivers each day. During the 3 years, we observe 6 different drivers (DXY, stock 

market sentiment, cryptocurrency prices, gold risk, USA inflation rate and USA interest rates). 

We subsequently fit the BN for every day after which we derive the marginal probability of 

‘Gold price’. To back-test the performance of this probability, we deploy the following simple 

trading rules: if the probability>0.55, we buy gold. If the probability drops below 0.5, we exit 

the position. If the probability drops below 0.45, we short gold and once the probability 

increases over 0.5, we exit the short position. Trading costs are set to 5 bps. Note that the trade 

is executed the (business) day after the probability is computed. In this way we guarantee the 

information in the BN is truly forward looking. Figure 7 displays the marginal probability for 

‘Gold price’ in blue along with the return for gold (Fred: GOLDPMGBD228NLBM, Gold 

Fixing Price 3:00 P.M. (London time) in London Bullion Market, based in U.S. Dollars). For 

most of the period, the BN suggests holding gold. The holding periods are indicated with the 

green boxes, while the yellow boxes indicate the periods in which a short position is taken. 

During the 3.5-year period, the trading strategy shown in red yields a 61% gain, outperforming 

a long-only strategy on gold with about 11%.  

Figure 7 Back-test of a BN centred around gold price. 

 

CONCLUSIONS AND FURTHER WORK 

 

In this paper, we demonstrated a way to automatically convert causal reasoning 

expressed by thousands of experts into BNs. To the best of our knowledge this is the first paper 

to show how the trends expressed in causal reasoning by a crowd of authors can be cast as a 

BN, and hence yield a JPT which expresses different future states of the world and their 

probability. We consider this to be the main scientific contribution of the paper. The results 

show that reasonable looking networks result from this procedure, not only in the graph 

structure, but also in the automatically derived relations between the nodes.  

There are a lot of open lines of research starting from the findings of this paper. In 

particular, a different way to construct and ensure a coherent DAG can be explored; the NLP 



 
 

engine can be extended to consider higher order (e.g. double, triple etc.) probabilities; the 

extension to continuous variables of the BN could yield an answer to the question of how much 

a variable can be up or down – in other words infer the magnitude of a move in a variable not 

only the direction. Finally, models that include both directed and undirected links like chain 

graphs can be used to account for some cyclical relations that might arise in the real world. We 

leave this for future research. 
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APPENDIX A 

 

Table 16 Example sentences for the three drivers of 'USA inflation rate' for every 

combination of the driver and target trend 

Driver Target Driver 

trend 

Target 

trend 

No. Sentence 

Oil 

prices 

USA 

inflation 

rate 

Down Down 1 With inflation easing on the back of lower oil prices and 

falling commodity prices has allowed RBI to lower 

interest rates, and further interest rate cuts cannot be ruled 

out, which would further boost the economic climate and 

consumer sentiment and create a positive demand 

environment for the auto sector. 

2 Wholesale inflation fell 0.2 % in December, driven by 

lower gasoline prices. 

3 U.S. inflation dropped to 1.6 % in January due to lower 

fuel prices, hitting a 19-month low. 

Down Up 1 U.S. consumer prices rose modestly last month, weighed 

down by falling gasoline prices. 

2 US consumer prices edge up just 0.1 % in January, 

weighed down by falling gasoline prices. 

3 Data showed U.S. consumer prices were unchanged in 

November, in line with expectations, due to a sharp 

decline in gasoline price but underlying inflation 

pressures remained firm amid rising rents and healthcare 

costs. 

Up Down 1 In June, we saw an inflation slowdown despite the spike 

in gasoline prices. 

2 Additionally, higher crude prices tend to adversely affect 

inflation. 

3 Furthermore, it was observed that despite higher oil 

prices, inflation in the external environment of the Polish 

economy was moderate, and in the euro area it was low. 

Up Up 1 Inflation has been on an uptrend recently thanks mainly 

to higher oil prices. 

2 Surging gasoline prices caused U.S. consumer prices to 

rise last month at the fastest pace since March. 



 
 

3 A few days ago, we discussed how soaring oil prices have 

been a stagflationary double whammy to emerging 

markets, which have been hit not only by a surging dollar, 

resulting in a collapse in local currencies and spiking 

import costs, but a spike in local currency oil and 

gasoline prices resulting in a surge in inflation and a 

slowdown in the economy as local infrastructure grinds 

to a halt. 

Food 

products 

prices 

USA 

inflation 

rate 

Down Down 1 The softer inflation figures were attributed to a decline in 

food prices. 

2 Lower prices of food and non-alcoholic beverages drove 

inflation down last month. 

3 Official figures show that the recent fall in food prices 

has pushed down inflation. 

Down Up 1 In his view, the progress of the comparative base of pork 

prices - which declined from July 2020 onwards - will 

boost food inflation, while the tightening of the labour 

market - with less contracting capacity due to improved 

employment figures - will do the same with the basic. 

2 Food inflation increased to 0.4 percent, the lowest since 

March 2018 with a significant drop in fresh food prices. 

3 The IMF report, which acknowledged the efforts of the 

Central Bank of Nigeria (CBN) to rein in inflation, 

however, maintained that despite an expected easing of 

food prices, inflation is projected to remain in double-

digits and above the CBN’s target range. 

Up Down 1 Food inflation dipped on account of smaller increases in 

the prices of non‐cooked food. 

2 On the other hand, food inflation dipped to 1.6 per cent 

last month, on account of smaller increases in the prices 

of non-cooked food and restaurant meals. 

3 He said the SBP has accepted that inflation was due to an 

increase in food prices and that these supply side 

pressures were likely to be temporary, with an 

expectation of decline in average inflation within the 

range of seven to nine percent. 

Up Up 1 If food prices are rising, genuine “main street” inflation 

is on the rise. 

2 Consumer inflation has risen, mostly driven by a surge in 

pork prices. 

3 The CBRT also saw little risk in runaway inflation 

accelerating from here, despite prices - especially food - 

still soaring. 

USA 

GDP 

USA 

inflation 

rate 

Down Down 1 There are signs that the U.S. economy is stumbling, and 

that low inflation is more stubborn than the fed 

previously thought, both of which argue for lower rates. 

2 Inflation should fall by no less than 5 points, partly 

because of the cooling of the economy as by restrictions 



 
 

on access to foreign currency," said economist Gabriel 

Monzón. 

3 Working relentlessly to bring prices under control, 

Volcker raised the Fed's benchmark interest rate from 

11% to a record 20% by late 1980 to try to slow the 

economy's growth and thereby shrink inflation. 

Down Up 1 0.5 per cent in February 2020 (year-on-year), while food 

inflation stood at 1.0 per cent, mainly due to reported 

price declines for fresh vegetables and fruits. 

2 Economists expect the broad deflationary trend to give 

way to higher inflation at least next year partly because 

of extraordinary measures by the federal reserve to 

cushion the economy’s fall, including programs to help 

keep companies afloat. 

3 Although economic activity is slowing down, rising oil 

prices may put pressure on inflation, something that 

would force the federal reserve to raise rates sooner than 

expected. 

Up Down 1 Bangko Sentral ng Pilipinas (BSP) governor Amando 

Tetangco said he did not foresee the inflation target being 

breached over the policy horizon despite strong GDP 

growth. 

2 What is notable, although nothing strange here, is that 

inflation and above all the inflation in 2020 would have 

passed 30% despite a collapse of the economy calculated 

at 11% and despite, also, the freezing of gas and 

electricity tariffs: 0.6% in the year, reports the chapter of 

the index that represents them. 

3 The moves were an attempt to boost economic activity 

and, in turn, lift still-sluggish inflation towards the bank's 

just-below-two-percent goal. 

Up Up 1 The prospect of additional stimulus and ongoing 

vaccinations has raised concerns that as Americans 

eventually release pent-up demand for airline tickets, 

hotel rooms, new clothes and other goods and services, 

the economy might accelerate, and inflation could surge 

above 2%. 

2 Typically, if we are headed toward the end of an 

economic expansion, resources become scarce in an 

overheated economy leading to surging inflation so that 

the fed has to swoop in to cool things off by raising rates 

and pulling liquidity out of the financial system. 

3 Data on Tuesday showed U.S. consumer prices rose 

marginally in May as gasoline price increases slowed and 

the underlying trend continued to suggest moderate 

inflation in the economy. 

 

APPENDIX B 

 



 
 

In this appendix we provide background information on the fitting procedure employed 

in the paper and already described in paragraph ‘Deriving a well-defined JPT’. Let u represent 

up and d represent down states. Regardless of the DAG structure, the model can be represented 

via the following exhaustive table:   

Table 17: Joint probability table 

(x1,…xn) probability 

(d,…,d,d) p(d,…,d,d) 

(d,…,d,u) p(d,…,d,u) 

⁞ ⁞ 

(u,…,u,u) p(u,…,u,u) 

 

This is called the joint probability table (JPT). For the eight vertex DAG shown in 

Section   'Two drivers per core node model’, the JPT contains 256 elements. In terms of simple 

parameter counting, this isn’t necessarily daunting because there are many thousands of text 

statements related to the economic variables in this DAG. However, any individual text 

statement about these variables will only pertain to one or two of them, e.g., “oil processing 

tends to rise as oil demand rises” or “metal and mining production cost tend to fall as the US 

dollar rises”. This relative coarse information doesn’t immediately lend itself to the problem of 

estimating the joint probability table, as already explained in the body of the paper.  

 

The log-linear model 

 

In view of the data structure and characteristics above, we propose the following 

parametric model for the entries of the JPT: 

𝑝(𝑥1, ⋯ , 𝑥𝑛) =
exp (𝜇 + ∑ 𝜆𝑥𝑖

(𝑖) + ∑ 𝜆𝑥𝑗𝑥𝑘
(𝑗𝑘)

𝑗𝑘
𝑛
𝑖=1 )

∑ …∑ exp (𝜇 + ∑ 𝜆𝑦𝑖
(𝑖) + ∑ 𝜆𝑦𝑗𝑦𝑘

(𝑗𝑘)
𝑗𝑘

𝑛
𝑖=1 )𝑦𝑛𝑦1

, (10) 

 

where the sums ∑ (. . . )𝑗𝑘  take place over all arcs 𝑗 → 𝑘 in the DAG. This is an example of a 

log-linear model, which finds use in applications ranging from statistical physics to spell 

checking (Murphy, §19.3). It also generalizes the basic saturated model for two-way 

interactions (Friendly & Meyer, 2015, Eq. 8.2). By design, the interaction strength 𝜆𝑥𝑦
(𝑗𝑘)

 

captures co-movement between the binary random variables x, y at the respective ends of the 

arc 𝑗 → 𝑘. 

Strictly speaking, 𝜇 is a redundant parameter; it factors out of 𝑝(𝑥1,⋯ , 𝑥𝑛). In fact, 

there’s considerable additional redundancy in the parameters of this log-linear model. Consider 

a typical interaction strength 𝜆𝑥𝑦 = 𝜆𝑥𝑦
(𝑗𝑘)

. Define  

𝜆𝑥+: = ∑ 𝜆𝑥𝑦
𝑦𝜖{𝑢,𝑑}

 



 
 

and define 𝜆+𝑦 and 𝜆++ analogously. If  

𝛼𝑥: =
1

2
𝜆𝑥+ −

1

4
𝜆++ and  𝛽𝑦: =

1

2
𝜆+𝑦 −

1

4
𝜆++ , 

then  

𝜆𝑥𝑦 =
1

4
𝜆++ + 𝛼𝑥 + 𝛽𝑦 + �̃�𝑥𝑦  

where �̃�𝑥+ = �̃�+𝑦 = 0 for all x, y. Applying this formula to every interaction strength in (10), 

we can absorb the constants 1
4
𝜆++ into 𝜇 and the first order terms 𝛼 and 𝛽 into the 𝜆𝑥

(𝑖)
 terms, 

leaving us with an equality of the form 

𝜇 +∑𝜆𝑥𝑖
(𝑖)

𝑛

𝑖=1

+∑𝜆𝑥𝑗𝑥𝑘
(𝑗𝑘)

𝑗𝑘

= 𝜇 +∑�̃�𝑥𝑖
(𝑖)

𝑛

𝑖=1

+∑�̃�𝑥𝑗𝑥𝑘
(𝑗𝑘)

𝑗𝑘

, (11) 

where  

�̃�𝑥+
(𝑗𝑘)

= �̃�+𝑦
(𝑗𝑘)

= 0 

For all x, y and for all arcs 𝑗 → 𝑘. Taking this one step farther, we can also absorb the 

means 1
2
�̃�+
(𝑖)

of the first order terms 1
2
�̃�𝑥
(𝑖)

 into 𝜇. So doing, we may also assume that �̃�+
(𝑖)
= 0 for 

all vertices i. Accordingly, in view of the equality (11), we simply impose the constraints  

𝜆+
(𝑖)
= 𝜆𝑥+

(𝑗𝑘)
= 𝜆+𝑦

(𝑗𝑘)
= 0 

on the original model parameters. These restrictions coincide with Friendly & Meyer (2015) 

Eq 8.3. According to Friendly & Meyer (p 349, para. 2), these constrains arise because not 

every parameter is separable estimable. They call them “typical ANOVA sum-to-zero 

restrictions”. Subject to these restrictions, there is evidently one degree of freedom for every 

main effect 𝜆(𝑖). There’s also a single degree of freedom for every 2x2 array 𝜆𝑥𝑦. These take 

the form (
+𝜃 −𝜃
−𝜃 +𝜃

) where 𝜃𝜖ℝ. Thus, if the DAG has a arcs, model (10) has n + a degrees 

of freedom, one for each of the main effects and one for each of the a interactions. As noted 

earlier, 𝜇 factors out of the distribution so it is not included in the parameter count.  

Using matrix-vector notation, the JPT corresponding to (10) can be expressed as (scaled) 

elementwise exponential 

𝐉𝐏𝐓𝐿𝐿(𝚯):=
𝒆𝑿𝚯

𝟏 ∙ 𝒆𝑿𝚯
 

 

Here, 𝚯 is an (n+a)-dimensional parameter vector and X, the model matrix, has entries 0 or 

±1. It has 2n rows, the length of the JPT vector. The super script ‘LL’ highlights the loglinear 

nature of the model.  

Fitting the model to observed marginal probabilities 

 



 
 

Using the data provided by the upstream NLP analysis, we form empirical estimates 

�̂�(𝑥𝑗ℓ , 𝑥𝑘ℓ) of the bivariate marginal probabilities  

𝑝(𝑥𝑗ℓ , 𝑥𝑘ℓ) = 𝑝(+⋯+, 𝑥𝑗ℓ , +⋯+, 𝑥𝑘ℓ , +⋯+) 

corresponding to all arcs 𝑗ℓ → 𝑘ℓ, 1 ≤ ℓ ≤ 𝑎, in the DAG. Here we apply the “+” convention 

introduced earlier. Note that the nature of the data is such that forming empirical estimates of 

higher order marginals is infeasible. Stacking these marginals into a 4a-dimensional vector P, 

the previous equation can be written as  

𝐏 = 𝐌 ∙ 𝐉𝐏𝐓, 

where M is a 4a x 2n matrix of zeros and ones. Accordingly, in the light of the expression for 

the JPTLL, it is natural to see a parameter vector 𝚯 that minimizes the distance between the 

empirical marginal vector  

�̂� =

(

 
 
 
 

⋮
�̂�(𝑥𝑗ℓ = 𝑢, 𝑥𝑘ℓ = 𝑢)

�̂�(𝑥𝑗ℓ = 𝑢, 𝑥𝑘ℓ = 𝑑)

�̂�(𝑥𝑗ℓ = 𝑑, 𝑥𝑘ℓ = 𝑢)

�̂�(𝑥𝑗ℓ = 𝑑, 𝑥𝑘ℓ = 𝑑)

⋮ )

 
 
 
 

 

And corresponding model marginal vector  

𝐏(𝚯):= 𝐌
𝒆𝑿𝚯

𝟏 ∙ 𝒆𝑿𝚯
 

While we take this natural distance minimization criterion into account, we do not 

apply it fully. This is because obtaining a best fir log-linear model is not the primary 

objective. The log-linear model does not fully account for the underlying DAG structure. 

Evidently univariate marginals can be accommodated along with bivariate marginals; we 

would simply expand the empirical marginal vector to include the relevant univariate 

estimates and expand the matrix M to match. An interesting property of the log–linear model, 

testifying to its relative parsimony, is that when fitting it to all univariate marginals and the 

bivariate marginals corresponding to DAG arcs, the number of model parameters n + a is 

precisely the same as the number of fitted marginal distributions. 

 

The Bayesian network 

 

The log-linear model cannot account for the orientation of the arcs in the underlying 

DAG. It would be entirely indifferent to the reversal of every arc in the graph. However, by 

design, the BN certainly accounts for the orientation of the arcs. Accordingly, the goal is to 

fit a BN to the data. As explained in the next section, it would be very difficult to fit a BN 

directly to the empirical marginal vector DP. However, this is not the case for the log–linear 

model. It serves as an intermediary to facilitate the overall fitting process.  



 
 

A BN is parameterized by the conditional probabilities entering the expression 

𝑝(𝐱) = ∏ 𝑝(𝑥𝑣|𝒙𝑝𝑎(𝑣))
𝑛
𝑣=1 . Thus, if 𝑥𝑖𝜖 {𝑢, 𝑑} for all I, the BN parameters are the conditional 

probabilities 

𝑝(𝑥𝑣 = 𝑢|𝐱𝑝𝑎(𝑣)), 𝑝(𝑥𝑣 = 𝑑|𝐱𝑝𝑎(𝑣)),      𝑣𝜖 {1, … , 𝑛} 

In general Byesian networks with binary outcomes {𝑢, 𝑑}, there is some number 2P of 

conditional probabilities, P of which take the form 𝑝(𝑥𝑣 = 𝑢|𝐱𝑝𝑎(𝑣)) while the other P takes 

the form 𝑝(𝑥𝑣 = 𝑑|𝐱𝑝𝑎(𝑣)). We denote the ‘up’ probabilities by the P-dimensional vector 𝜸 

and the full set of 2P probabilities by the vector 𝜸′. Evidently 𝜸′ is determined by 𝜸 𝒔ince 

conditional probabilities sum to one; i.e. 

𝛾′𝑘 + 𝛾′𝑃+𝑘 = 1,      1 ≤ 𝑘 ≤ 𝑃 

Furthermore, the equation 𝑝(𝐱) = ∏ 𝑝(𝑥𝑣|𝐱𝑝𝑎(𝑣))
𝑛
𝑣=1  directly translates into the following 

expression for the BN’s JPT vector: 

𝐉𝐏𝐓𝐵𝑁(𝛾) = 𝑒𝐀 𝒍𝒏 𝛾′ 

Here the logarithm and the exponential are evaluated elementwise, and A is a 2n x 2P matrix 

of zeros and ones determined by the DAG topology. 

We choose 𝚯 and 𝜸 simultaneously by minimizing the objective  

𝐿(𝚯, 𝜸)  =  ‖�̂�  −  𝐏(𝚯)‖
2
 +  ‖𝐉𝐏𝐓𝐿𝐿(𝚯) − 𝐉𝐏𝐓𝐵𝑁(𝜸)‖2, 

where ‖…‖  denotes the appropriate Euclidean norms. We subsequently study the BNs 

corresponding to the fitted value 𝜸∗for several different DAGs. 

 

Motivation 

 

In principle, instead of using the two-stage procedure detailed above, we might have 

minimized the simpler objective 

𝐿(𝜸)  =   ‖�̂�  −  𝐌 ∙ 𝐉𝐏𝐓𝐵𝑁(𝛾)‖
2
, 

with respect to 𝜸. However, according to Rebonato & Denev (2014), there are typically many 

possible parameter vectors 𝜸 corresponding to a given set of bivariate marginal probabilities, 

which renders this minimization problem ill-posed. While Rebonato & Denev suggest a 

regularization method based on the addition of an entropy-based penalty term, it involves an 

arbitrary weighting factor. Unfortunately, by experimenting with relatively simple DAG, we 

find that the penalized optimizer is highly dependent on the choice of this weighting factor. It 

would be infeasible to retune this factor for every DAG encountered in practice.  

We introduce the log-linear model as an intermediary to deal with the ill-posed 

conditions noted above. By making a full JPT vector 𝐉𝐏𝐓𝐿𝐿(𝚯) available for comparison to 

𝐉𝐏𝐓𝐵𝑁(𝜸), these difficulties seem to vanish. Even in cases where the regularization method 



 
 

described above proves problematic, choosing 𝛾 to minimize the Euclidean distance between 

the two JPT vectors is a numerically well-behaved problem that gives sensible results.  

We argue that such an intermediary model must satisfy several important design constraints: 

1) The model must be conservative, in that is has just enough parameters to fit the 

observed marginals and is as “impartial” as possible.  

2) The model must be reasonably easy to fit to the data, and 

3) It lends itself to the problem of fitting a BN.  

Regarding Criterion 1), the log-linear model has precisely the number of parameters required 

to capture the main and pairwise interaction effects, which are the only effects discernible 

form the data made available by the upstream NLP analysis. A key measure of the log-linear 

model’s impartiality is the fact the its model matrix X is orthogonal. Regarding 2) there are 

several proven procedures for fitting log-linear models; see for example chapter 8 of Friendly 

& Meyer (2015). Minimizing the objective 𝐿(𝚯, 𝜸) is a practical compromise that more 

readily accounts for 3) the end goal of fitting a BN. As we put it in Section ‘Deriving a well-

defined JPT’, “the minimization procedure ensures the obtained BN has its parameters based 

on a log–linear JPT that contains no more information than can be available from the data 

acquisition procedure and is well defined.” 

 

 


