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Abstract

A deeper comprehension of financial markets necessitates understanding not only the statis-
tical dependencies among various entities but also the causal dependencies. This paper extends
the Constraint-based Causal Discovery from Heterogeneous Data algorithm to account for lagged
relationships in time-series data (an algorithm we call CD-NOTS), shedding light on the complex
causal relations between different financial assets and variables. We compare the performance of
different algorithmic choices, such as the choice of conditional independence test, to give general
advice on the effective way to use CD-NOTS. Using the results from the simulated data, we apply
CD-NOTS to a broad range of indices and factors in order to identify causal connections among
the entities, thereby showing how causal discovery can serve as a valuable tool for factor-based
investing, portfolio diversification, and comprehension of market dynamics. Further, we show our
algorithm is a more effective alternative to other causal discovery algorithms since the assumptions
of our algorithm are more realistic in terms of financial data, a conclusion we find is statistically
significant.

1 Introduction

Actions have consequences; that explains causality in simple words. Going beyond correlation or
association, it is a guide which helps us gain a deeper understanding of the relationships between events,
allowing us to perceive the impact of one phenomenon on another. An empirical causal framework
would consist of three phases: (a) causal discovery; (b) causal inference; (c) causal explainability. In
the first phase, the causal network is estimated from the data based on independence tests. When the
network is discovered, then different scenarios can be tested on the structure. Afterwards, we can dive
deep into the intuitive why of the causal network and results.

In this paper, our focus is on causal discovery, which aims to uncover the causal dependency structure
from the observed data (Spirtes et al., 2001). While the traits in the data narrow down the possible
causal network structures, it may not necessarily be sufficient to discover the complete underlying true
causal network.

Most causal discovery methods can be categorized into three types of algorithms: constraint-based
(e.g., Spirtes et al. (2000); Huang et al. (2020)), score-based (e.g., Chickering (2003); Silander and
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Figure 1: We show a high-level diagram of the problem we are solving. We insert some time-series
data into our causal discovery algorithm, from which we get a causal diagram of how the variables are
related.

Myllymäki (2012); Lam et al. (2022)), and functional causal model-based (FCM) (e.g., Shimizu et al.
(2006, 2011); Hyvärinen et al. (2010)). The constraint-based causal discovery algorithm infers causal
dependency between nodes by running statistical independence tests among conditional and marginal
probabilities to establish the network structure. The score-based algorithm defines a score criterion
(e.g., likelihood scores Schwarz (1978); Buntine (1991)) and optimizes for the causal structure that
best fits the data. On the other hand, FCMs intend to model the functional mechanisms of the
variables. This calls for additional assumptions on the distribution of the data or domain-specific
knowledge.

Causal discovery algorithms require assumptions about the data generating process; thus, each algo-
rithm has limitations depending on the realism of the assumptions. For example, some only work on
linear systems (Granger, 1969), some assume a Gaussian distribution for the variables (Ramsey and
Andrews, 2017), and many assume there are no latent (unobserved) confounders (Zhang and Hyväri-
nen, 2009). Further, implementing causal discovery algorithms on time-series data adds additional
challenges, such as sampling interval and nonstationarity, to the existing issues. There are ways to re-
duce the nonstationarity of time-series data such as using stock returns as opposed to price. However,
empirically, we find this is insufficient to make the process stationary. Unlike evaluation of predictive
performance, in general, causal discovery algorithms, when applied in practice, do not have ground
truth data or ways to test the accuracy of the discovered network via randomized controlled trials. This
leads to the importance of ensuring that the assumptions of the causal discovery algorithm pertains
to the situations in which they are used. In our case studies (Section 5), we show that, in the financial
examples we experiment with, the data is neither linear, Gaussian, nor stationary.

Our developed algorithm, Constraint-based Causal Discovery from Heterogeneous Time-Series (CD-
NOTS), overcomes the limitations mentioned above. It is a nonparametric approach, meaning it can
capture both linear and non-linear causal relations and can also capture non-Gaussian distributions.
It is capable of handling nonstationarity, and it is able to detect both lagged and contemporaneous
causalities. Prior work has developed and used causal discovery algorithms that capture subsets of
these properties; our work is the first (to the best of our knowledge) to tackle all three. We then
analyze the patterns found in financial data using this algorithm.

The structure of this paper is as follows. In Section 2, we outline the related work and literature.
Moving on to Section 3, we explain our methodology in detail. In Section 4, we conduct an investigation
of simulated and real financial data to assess the framework’s validity and performance. Finally,
in Section 5, we summarize the key findings of the paper and propose potential avenues for future
research.

The most similar to our work is Huang et al. (2020), which we extended to handle lagged relationships
in time-series data. In Section 3.3, we show a simple example in which we illustrate the difference
in the causal relationships discovered when accounting for lagged relationships. Huang et al. (2020)
discusses in their work a way in which their algorithm can be extended to lagged relationships; how-
ever, in Section 3.4, we show a simple example in which their extension would discover an incorrect
graph.
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2 Related Work

Causality explores the mechanisms that influence the outcomes, providing a more comprehensive pic-
ture of the why and how of unfolding events. The Rubin Causal Model (Rubin, 1974) and Pearl’s
Structural Causal Model (SCM) (Pearl, 2009a) are two approaches that are mainly considered when
talking about causal relations.. A Structural Causal Model (Pearl, 2014) defines the causal relation-
ships between variables via functions, taking the cause and the effect variables as input and output
respectively. The SCM can be represented as a graphical model which can then be used for causal infer-
ence. On the other hand, the Rubin model (Splawa-Neyman et al., 1990), also known as the Potential
Outcomes Framework, defines the conditional independence properties of the treatment assignment
mechanism in order to analyze the unit-based response variable. Often, this framework requires a set
of covariates that satisfy conditional ignorability, or in other words, no unobserved confounders. Note
that prior work has shown that SCMs are formally equivalent to the Potential Outcomes Framework
(Pearl, 2009b).

Many statisticians have formulated multiple computational techniques and procedures to discover
causal links through learning the causal relationships, typically depicted as directed acyclic graphs,
as reviewed in Glymour et al. (2019). After obtaining the causal skeleton, there is an attempt to
orient the edges. The two main methods are constraint-based and score-based. Constraint-based ones
can handle confounders as the score-based approach is applicable only when there is a no-confounder
assumption.

Constraint-based algorithms run independence-based tests to establish the underlying causal network
(Nogueira et al., 2022). This set of algorithms starts from a full graph, orients edges based on con-
ditional independence (CI), and identifies colliders. It is an iterative process which ends when there
are no further edges to orient. Two widely used algorithms are Peters and Clark (PC), and Fast
Causal Inference (FCI) (Spirtes et al., 2000). PC assumes the absence of confounders, which results in
asymptotically correct causal information that helps with simplifying the problem. There have been
improvements to the PC algorithm that tend to reduce the number of conditional independence tests
and relax the assumptions (e.g., Tsamardinos et al. (2006); Bühlmann et al. (2009); Ramsey et al.
(2012)). On the other hand, FCI produces asymptotically correct outcomes even when confounders
are present; Colombo et al. (2012) and Rohekar et al. (2021) are two improved FCI works. Since our
work is an extension of the PC algorithm, we utilize four different tests: Kernel-based Conditional
Independence Test (KCIT) (Zhang et al., 2012), Randomized Conditional Correlation Test (RCoT)
(Strobl et al., 2017), Conditional Mutual Information K-nearest neighbor (CMIknn) Test (Runge,
2017), and Partial Correlation (ParCorr) (Baba et al., 2004).

More recently, causal structure discovery algorithms have been developed that do not require statistical
tests but instead use assumptions of the functional form or of the distribution in order to recover
the structure (Shimizu et al., 2006; Zhang and Hyvärinen, 2010; Zhang and Hyvarinen, 2012). For
example, these algorithms assume absence of confounders and a non-Gaussian distribution within the
data, enabling them to uncover the asymmetry inherent in the causes and effects distribution (Gendron
et al., 2023).

Causal discovery in time-series data is about uncovering and quantifying causal relationships among
variables that evolve over time. The difference between causal discovery methods and traditional time-
series analysis is that causal discovery aims to identify the cause and effect relationships in the data,
while traditional time-series analysis is more focused on prediction.

Granger causality (Granger, 2001) is an approach that estimates the linear causal relations using a
VAR model (Hyvärinen et al., 2010). There is additional work for causal structure recovery using
Dynamic Bayesian Networks and Hidden Markov models (Moraffah et al., 2021). Another class of
causal discovery methods uses information theoretic quantities such as Mutual Information (Palus
et al., 2001), and Transfer Entropy (Schreiber, 2000). Furthermore, graphical approaches like Time-
Series Fast Causal Inference (Entner and Hoyer, 2010) and PCMCI (Runge et al., 2019) are more
recent graphical approaches that are tweaked to be able to handle time-series data.

Most of the time-series causal discovery literature mentioned are focused on stationary time-series, and
their approaches might lead to spurious causal relations if the time-series contains distributional shifts.
Some work has been developed to address this gap (e.g., Peters et al. (2015); Zhang et al. (2017)).

3



One approach is to assume the consistency of the nonstationarity reflected in the network across time.
For instance, Huang et al. (2020) proposes an algorithm for heterogeneous time-series that only checks
the nonstationarity at one time t. Our developed algorithm extends this to handle nonstationarity in
lagged relationships.

3 Methodology

Time-series is the fundamental type of data used in many domains, from finance to climate science and
engineering, requiring customizing algorithms to take this type of data as input. This tailoring requires
taking into account some of the characteristics that this type of data carries, such as temporality, lead-
lag dependency, and nonstationarity. Similar to CD-NOD, our algorithm, Constraint-based Causal
Discovery from Heterogeneous Time-Series (CD-NOTS), has four steps: adding the time-indexed node,
using conditional independence tests to discover the causal skeleton (undirected causal graph), orienting
the edges via prior knowledge and specific structures (e.g., the arrow of time and V-structures), and,
finally, orienting remaining edges based on causal change independence. By design, our framework is
able to handle time-series as input and, accordingly, takes into account its unique characteristics; in
comparison, CD-NOD does not handle lagged relationships (Section 3.4).

With suitable assumptions, the causal network, using only observational data, can be estimated us-
ing conditional independence tests (Schölkopf et al., 2021). We follow the same set of assumptions
commonly used in the causal network field.

Assumption 1 (Causal Sufficiency). We assume that any potential confounders can be expressed as
a smooth function of time. Hence, the time index node is a representation of all confounders.

Assumption 2 (Causal Faithfulness). We assume that the conditional independence between the
observed data is a true reflection of the absence of a direct relation in the variables given the conditional
set. In other words, if X is conditionally independent of Y given Z (X ⊥⊥ Y |Z), then this is true in
the underlying causal network.

Assumption 3 (Randomness). The data points are randomly selected from the population implied
by the causal model (i.e., there is no selection bias).

Assumption 4 (Causal Consistency). We assume that the causal relations between the variables,
including the time indexed node, are consistent through time. This means that when lagged relations
are present, the contemporaneous causal relations are the same in each lag and the cross lag causal
relations also repeat themselves.

3.1 CD-NOTS Algorithm

We extend the algorithm described in Huang et al. (2020) in order to identify the causal network for
time-series. Our developed approach, termed Constraint-based Causal Discovery from Nonstationary
Time-Series (CD-NOTS), enhances the original method for identifying causal relationships between
time-series. We show a high-level diagram of our algorithm in Figure 2.

Stage 1 Assume we have N time-series. Within our network setup, each time-series is treated as
a distinct node, denoted as Vi,t, representing the time-series i at time t. To handle nonstationarity,
we introduce a time-indexed node, Ut. Specifically, for any nonstationary time-series i, we anticipate
a connection between Vi,t and Ut across all time points. We start from a full graph including the
time-indexed node, where all the edges are drawn out.

Stage 2 With Assumptions 1, 2 and 3 in place, we reconstruct the causal skeleton. Employing CI
tests, we investigate the independence between a node and the time-indexed node given a subset of
nodes S. This process figures out the edges between nodes Ut and Vi,t. The hypothesis test is:

H0 : P (Vi,t, Ut|S) = P (Vi,t|S)P (Ut|S) ,
H1 : P (Vi,t, Ut|S) ̸= P (Vi,t|S)P (Ut|S) ,
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which we test for all subsets S ⊆ {Vk,t−l | k = 1, ..., N ; l = 0, ..., L} \ {Vi,t} where L denotes the
maximum considered lag. Note that this hypothesis examines the relationship between the time-
indexed node and other nodes at the identical time point t, maintaining consistency across time
t− l.

Afterwards, utilizing the same test, we evaluate the independence of node pairs Vi,t−l and Vj,t excluding
Ut. The null hypothesis is that the pair are conditionally independent, implying that their conditional
probability equals the product of their marginals. If the obtained p-value falls below the confidence
level, signifying dependence, the edge between the pair remains. The hypothesis test is:

H0 : P (Vi,t−l, Vj,t|S) = P (Vi,t−l|S)P (Vj,t|S) ,
H1 : P (Vi,t−l, Vj,t|S) ̸= P (Vi,t−l|S)P (Vj,t|S) ,

where S ⊆ {Ut} ∪ {Vk,t−m | k = 1, ..., N ;m = 0, ..., L} \ {Vi,t−l, Vj,t}. It is worth noting that when
l = 0, indicating no lag, we capture the contemporaneous relationships between nodes. On the other
hand, when l > 0, we discover the lagged dependencies among the time-series. Under Assumption 4,
we maintain the structure consistent over time. This means that the discovered dependencies between
Vi,t−l, Vj,t remain the same for Vi,t−l−m, Vj,t−m;m = 1, ..., l− 1. The discovered network is undirected
and has the edge minimality condition. This condition signifies that the network has the smallest
number of causal changing mechanisms. This is due to the faithfulness across the entire network
(Ghassami et al., 2018).

Stage 3 Once we have derived the network skeleton, our next step involves orienting the edges based
on existing knowledge. If there are any nonstationary nodes, meaning there exists an edge between the
node and time indexed node, then the orientation is from the time indexed node to the nonstationary
node, as time is what causes the node’s corresponding time-series to be nonstationary. Moreover, all the
edges where l < m between pairs Vi,t−l and Vj,t−m, the orientation is from Vi,t−m to Vj,t−l, as logically
the effect would happen after the cause. These directed edges along with the conditional independence
tests can be used to orient other edges using the unique properties of V-structures (colliders) (Spirtes
et al., 2000; Meek, 1995).

Stage 4 There might still remain some edges that are not yet directed. In the fourth stage, we rely
on the independent changes of the causal modules (Pearl, 2000). A dependency measure is defined
as an extension of the Hilbert Schmidt Independence Criterion (Gretton et al., 2008), which shows
the level of dependency between causal modules. This is done by developing a kernel embedding of
nonstationary conditional distributions and using their Gram matrix to create a test statistic (Huang
et al., 2017). We apply the Meek orientation rule (Meek, 1995) on top of this to orient other edges.
Note that there may remain edges that are undirected even after the third and fourth stage; in this
scenario, no comments can be given on the causal direction of the corresponding pair of nodes.

3.2 Testing the Assumptions

The main assumptions we claim that are incorrectly assumed in prior causal discovery algorithms
is stationarity, no lagged relationships, and linearity. Given the fact our algorithm does not make
the first two assumptions, we can analyze the graph from our algorithm to see if nonstationary and
lagged relationships are found; if found, then the conclusion is that, assuming stationarity (lagged
relationships) is the null hypothesis, the statistical tests could not reject the null hypothesis.

On the other hand, for the linearity assumption, we modify an algorithm used in prior work (Peters
et al., 2014) used in order to test post-hoc if the relationships are linear. Specifically, the relationships
are assumed to be linear in conjunction assuming with additive noise. The algorithm used in Peters
et al. (2014) is to perform a regression and then an independence test on the noise. Say the null
hypothesis we are testing is that X and Y have a linear relationship given Z (where we allow for Z
to have a non-linear relationship with Y and the noise to be heteroscedastic with respect to Z), we

perform a Gaussian process regression f̂ , where we use the linear kernel for X and a non-linear kernel
(e.g., RBF) for Z. Having done that, we then perform a CI test on Y − f̂(X,Y ) ⊥⊥ X|Z. Note that
our test is more generic than testing if all relationships are linear.

5



Stage 0: Consider four time-series
A, B, C and D with their lag one
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Figure 2: CD-NOTS algorithm schematic example
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Yt−1 Yt

U

Figure 3: Diagram of example causal graph for which CD-NOD’s time-series algorithm would make a
mistake.

3.3 Importance of Modeling Lagged Relationships

We show with a toy example how, if one were to not model lagged relationships but the data contains
them, the graph would find nonstationary variables. Say we have one variable Xt where:

dXt = −xtdt+
√
2dWt ,

X0 = 0 .

To discretize, we set t to be integers. Since this is simply an Ornstein-Uhlenbeck (OU) process, we
have:

P (xt|xu) = P (xt| N (xue
−|t−u|, e−|t−u|)) , u < t .

From this, we can see that P (xt|x0) is a time dependent distribution whereas P (xt|xt−1) is not. This
implies if we ran CD-NOTS assuming no lagged relationships (i.e., CD-NOD), xt would be considered
nonstationary; whereas, if we ran CD-NOTS assuming a single lag, then Xt−1 → Xt and Xt would
not be considered nonstationary.

3.4 Comparison to Algorithm in CD-NOD

Huang et al. (2020) presents an algorithm to extend CD-NOD to time-series. However, we find that in
the first step in the algorithm (‘Detection of changing modules’) to remove connections from the time
varying node U and observed variables Vi,t), the tests are only using a subset of {Vj,t}Nj=1 \U . We can
see in Figure 3 that Yt ⊥̸⊥ U and Yt ⊥̸⊥ U |Xt. This implies that the algorithm presented in Huang et al.
(2020) would leave out the edge from U and Yt.

4 Evaluation

In our algorithm, one major design decision is the conditional independence test. In order to ascertain
which conditional independence test might be most effective, we test our algorithm on different simu-
lated datasets. In total, we tested graphs with 3, 4, 5, 6, 8, 10, and 15 nodes, for a total of 350 graphs
(50 graphs per number of nodes). For each graph, we tested having 50, 150, 300, 500, and 1,000 data
points.

For the conditional independence tests, we specifically test using partial correlations (ParCorr, a
conditional independence test that assumes linearity), Kernel-based Conditional Independence Test
(KCIT), Randomized Conditional Correlation Test (RCoT), and Conditional Mutual Information K-
nearest neighbor (CMIknn) Test. For both KCIT and RCoT, there are a few variations in how the
p-value can be computed, specifically using the Satterthwaite–Welch (SW) method (Welch, 1938;
Satterthwaite, 1946) or Hall– Buckley–Eagleson (HBE) method (Hall, 1983; Buckley and Eagleson,
1988). The goal of these algorithms is to approximate the CDF of a weighted sum of squared normals,
which is the limiting behavior of the test statistic for KCIT and RCoT. The hyperparameters used for
each test can be found in Appendix A.
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In Figure 4, we compare the average F-score for each CI test across a varying number of nodes in
the graph and a varying number of data points per graph. As expected, the F-score improves as the
number of data points increase. Possibly most interesting is that ParCorr performs the best for low
data regimes. Further, we can see, as found by previous work (Bodenham and Adams, 2015), that the
SW variant of KCIT tends to be weaker than HBE (except when there are a large number of nodes
and only 50 data points). However, there seems to be little difference for RCoT. So, relying on results
in Bodenham and Adams (2015), we recommend the HBE variant. Finally, while CMIknn is quite
competitive, we do not recommend its usage due to its lengthy runtime (Figure 5).

Comparing against the best tests (KCIT HBE, RCoT HBE, ParCorr, CMIknn), we consider PCMCI
(Runge et al., 2019) as a benchmark since it is a comparable PC-based algorithm and is widely used
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in the causal discovery literature. The main difference in PCMCI over prior PC algorithms is its
pruning of the set of variables which to condition on in the CI test. In Figure 6, we see that CD-NOTS
consistently outperforms PCMCI.

5 Case Studies

We apply CD-NOTS on three different datasets: 1) Fama-French factors and Apple’s returns, 2)
unemployment, CPI, and PPI of different countries, and 3) Price-to-Book ratio and stock returns of
financial companies in the S&P 500. Most of the work done in factor investing and economic indices’
analysis rely on the correlation between the variables and do not consider the fundamental question of
“why” (López de Prado, 2023). In each case study, we explain the data and properties we see in the
data or has been found in prior work, discuss the implications of the causal networks found by CD-
NOTS, and, finally, show that the assumptions of stationarity, linearity, and no lagged relationships
would be incorrect to assume and thus, any algorithm making said assumptions would be inaccurate
and invalid to use on these datasets.

For all the graphs in the section, we color by the maximum p-value for that edge across all tests run
during the causal skeleton step (Stage 2). While we recognize that p-values are not a metric to measure
the strength of the relationship, we can think of the vicinity of the p-value to 0.05 as a measure of the
sensitivity of the graph to that hyperparameter (i.e., the threshold).

5.1 Fama-French Factors

Data For our first case study, we analyzed the relationship between the Fama-French factors (Fama
and French, 1993) and Apple’s returns from the beginning of 2000 to the end of 2022. In the data in Fig-
ure 7, we show that there is some correlation between the variables (e.g., the spike in volatility around
2008 can be seen in all six subplots) and, accordingly, all variables show volatility clustering.

Results and Discussion In Figure 8, we ran CD-NOTS using KCIT (RCoT results are in Appendix
B) on three non-overlapping periods of six to seven years (approximately 2000 observations each).
We note in all three periods that there is no connection from T to Apple’s returns (AAPL RET),
implying that the nonstationarity observed in Apple’s returns can be explained away by the Fama-
French factors. Further, the lagged relationships tends to be sparse, with many of the found lagged
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Figure 7: Time-series of Fama-French factors and Apple’s returns.
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(c) Jan 2016 - Dec 2022

Figure 8: Results of CD-NOTS KCIT run on three non-overlapping time periods.

relationships having a high p-value (close to 0.05). However, we see that the relationship between the
factors seems to change over time, as well as the relationship between the factors and Apple’s returns.
In Figure 9, we run CD-NOTS with KCIT on the whole time range, and we can see now that that
there is a connection from T to Apple’s returns (AAPL RET). This is to be expected for two reasons:
1) over the course of the last 22 years, Apple’s business model has changed, leading to exposures to
different factors over time, and 2) the changing relationship between the factors and Apple’s returns,
as seen in Figure 8.

Evaluating Assumptions One of the assumptions of CD-NOTS is causal consistency that the
causal graph does not change over time. We assert that the change in dependencies between the
factors and Apple’s returns that we see in Figure 8 are not a result of changes in the causal directions
but in the strength of the causal relationships as captured by the nonstationarity. Further, we note
that the fact that there is a relationship between T and all the Fama-French factors (nonstationarity)
implies that any causal discovery algorithm assuming stationarity would give invalid results. Similarly,
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Figure 9: Results of CD-NOTS KCIT run from beginning of 2000 to end of 2022.
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Figure 10: Results of CD-NOTS ParCorr run on six countries’ economic variables.

we find statistically significant lagged relationships. Further, for our linearity test, we test the linearity
of Apple’s returns and each parent factor (CMA and Mkt-RF) and find the linearity hypothesis can
be rejected for both factors; in other words, assuming linearity in the relationships between variables
would be incorrect and thus could lead to incorrectly identified causal relationships.

5.2 Economic Data

Data For our second case study, we analyzed the relationship between the month-over-month per-
centage change in CPI, the month-over-month percentage change in PPI, and unemployment for the
U.S., Japan, Canada, India, Italy, the U.K., and France. We use monthly data from the beginning of
2000 to the end of 2023.
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Figure 11: Results of CD-NOTS KCIT run on the economic variables of multiple countries.

Results and Discussion In Figure 10, we run CD-NOTS with ParCorr on the U.S., Japan, Canada,
Italy, France, and the U.K.; we use ParCorr since we have no more than 300 observations per country.
We can see that, while the graphs are not identical, they are quite similar, especially if we ignore edges
with a higher p-value. Further, we notice the three graphs for France, the U.K., and Italy are very
similar, possibly due to their geographic and economic proximity. We repeat the experiment with all
countries using KCIT (Figure 11); further, we introduce another static variable (Country) into the
graph. Similar to the previous case study in which the graph over all time periods is akin to a superset
of the edges of individual time periods, we see a similar behavior here. Note that Country does not
point to any other variable suggesting that the behavior across countries is independent of the country;
this observation could be used to justify training a single econometric model across countries.

Evaluation Assumptions Similar to the previous case study, we see statistically significant lagged
relationships and statistically significant nonstationarity, implying we would not be able to trust the
results of an algorithm that cannot handle these types of properties. For our linearity test, we test
the linearity of the percentage change of CPI and each parent node (both including and excluding
the contemporaneous percentage change in PPI since its direction was not inferred). We find that the
only time the linearity hypothesis cannot be rejected is when using the contemporaneous percentage
change in PPI as a parent and checking the linearity with the one-lag percentage change of CPI. We
note that this is inconsistent with our usage of ParCorr in Figure 10 since ParCorr is a linear-based CI
test. In Appendix C, we show the results of using KCIT and RCoT where we find qualitatively that
the graphs are similar.

5.3 Company Financials and Returns

Data For our third case study, we analyzed the relationship between the Price-to-Book ratio and
returns of financial companies in the S&P 500. We use data from the beginning of 2010 to the end
of 2023. We utilize reported quarterly numbers, where we set the date to be the end of each quarter.
To ensure no look-ahead bias when defining the Price-to-Book ratio, for any given date (i.e., end of
quarter), we use the Price-to-Book ratio available that day. We join the next quarter returns with this
company financials information. For our experiments, we use the log Price-to-Book ratio (LPTB) as
well as the normalized LPTB, which we define as the LPTB normalized by the mean and standard
deviation of the LPTB of financial companies in that quarter.

Results and Discussion In Figure 12b and Figure 12d, we compare the graphs we get running
CD-NOTS using KCIT using normalized LPTB instead of LPTB. We find that the nonstationarity is
removed (T does not point to N. LPTB). Further, we see that the previous quarter’s normalized LPTB
point to the next quarter’s returns with a reasonable p-value suggesting that its inclusion in the graph
is not purely a function of the threshold we chose. In Figure 12e, we compare the next quarter returns
and the normalized LPTB and see that the there is a small trend in the mean (the black circles). To
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Figure 12: Results of CD-NOTS KCIT run on financials data for log Price-to-Book ratio (LPTB) and
stock returns (Ret). Normalized LPTB (N. LPTB) refers to normalizing the LPTB by the mean and
standard deviation of the LPTB of financial companies in that quarter. For Figure 12f, our strategy
is long-ing financial companies that have a normalized LPTB greater than the threshold which we
compare against the market-cap weighted portfolio.
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this end, we create a simple trading strategy where we invest in the subset of the financial securities
whose LPTB is greater than some threshold. In Figure 12f, we see this simple approach outperforms
a market-cap weighted strategy; prior work (Monge et al., 2023) has found that growth stocks have
been outperforming value stocks. Importantly, we note that the goal of this is to not introduce a new
signal but to show how causal discovery can be a tool in searching for statistically significant relations
which, if the assumptions are true for the data, can be interpreted as causal.

Evaluating Assumptions Similar to previous case studies, we see statistically significant lagged
relationships and statistically significant nonstationarity, implying we would not be able to trust the
results of an algorithm that cannot handle these types of properties. For our linearity test, we test
the linearity of the normalized LPTB and returns conditional on all other parent nodes of returns and
find the p-value be to 0.0 (i.e., we can reject the null hypothesis that the relationship is linear).

6 Conclusion and Future Work

In this paper, we developed a novel algorithm, Constraint-based Causal Discovery from Heterogeneous
Time-Series (CD-NOTS), which is nonparametric (meaning it can capture both linear and non-linear
causal relations), can handle nonstationarity, and is able to detect both lagged and contemporane-
ous causalities. We showed using simulated data that, for effective use of CD-NOTS, one should
use ParCorr for low data regimes (less than 200 data points) and KCIT or RCoT for higher data
regimes.

We applied CD-NOTS to Fama-French factors and Apple’s returns, where we found that for small
time ranges (approximately seven years), Apple’s returns are stationary conditioning on the factors.
This justifies the usage of Fama-French factors as a method for returns attribution. However, over
longer time ranges (approximately two decades), we find Apple’s returns are nonstationary even after
accounting for the Fama-French factors, implying that there is a need to continually update the factor
exposures of Apple through time.

Further, we found the causal relationship of economic factors (specifically unemployment, CPI, and
PPI) tends to be similar across countries, especially for those geographically and economically similar.
This finding implies that we should be able to create stronger models in economics by training a single
model across different countries.

Finally, we apply CD-NOTS to company financials and stock returns and find a causal relationship
between the Price-to-Book ratio and future returns of financial companies, justifying the common
usage of Price-to-Book ratio for investing.

Besides our contribution in developing an algorithm that can handle nonstationarity, non-linear rela-
tionships, lagged and contemporaneous causalities, we showed the importance of these assumptions
in finance. Specifically, many of the assumptions made in prior work (notably linearity, no lagged
relationships, and stationarity) often do not hold in finance and thus should be used with caution.
Hence, through weakening the assumptions required for our causal discovery algorithm to be used,
we can trust more the causal relationships found by CD-NOTS and continue to explore the causal
relationships in other financial datasets.
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A Conditional Independence Tests Hyperparameters

For all conditional independence tests, we use a threshold of 0.05 for the p-value.

KCIT For KCIT, we use the RBF kernel where the bandwidth is set to the median distance between
the first five hundred data points.

RCoT For RCoT, similar to KCIT, we use the RBF kernel where the bandwidth is set to the median
distance between the first five hundred data points. Further, we use a fixed number of Fourier features,
specifically 25 for Z and 5 for Ẍ, X, and Y , similar to Strobl et al. (2017).

B Fama-French Factors Case Study with RCoT

We repeat the plots from our first case study (Section 5.1) using RCoT as opposed to KCIT. One
empirical finding was that, due to the randomness of RCoT, many times there could be an inconsistency
between the discovered graph and the CI tests, i.e., the graph shows conditional independences that
are not found by the CI tests. We leave it to future work to find how to account for these forms on
inconsistencies.
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Figure 13: Results of CD-NOTS RCoT run on three non-overlapping time periods.
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Figure 14: Results of CD-NOTS RCoT run from beginning of 2000 to end of 2022.

C Economic Data Case Study with KCIT and RCoT
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Figure 15: Results of CD-NOTS KCIT run on six countries’ economic variables.
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Figure 16: Results of CD-NOTS RCoT run on six countries’ economic variables.
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Figure 17: Results of CD-NOTS RCoT run on the economic variables of multiple countries.
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D Detailed Simulation Results

D.1 Different CI Tests
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Figure 18: F-score evaluation for CD-NOTS with different CI tests, tested out on many different
simulated datasets.
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Figure 19: Precision evaluation for CD-NOTS with different CI tests, tested out on many different
simulated datasets.
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Figure 20: Recall evaluation for CD-NOTS with different CI tests, tested out on many different
simulated datasets.

4 6 8 10 12 14
0

2

4

6

8

10

12

14

St
ru

ct
ur

al
 H

am
m

in
g 

Di
st

an
ce

Number of Data Points: 50

4 6 8 10 12 14

Number of Data Points: 150

4 6 8 10 12 14
Nodes

Number of Data Points: 300

4 6 8 10 12 14
Nodes

0

2

4

6

8

10

12

14

St
ru

ct
ur

al
 H

am
m

in
g 

Di
st

an
ce

Number of Data Points: 500

4 6 8 10 12 14
Nodes

Number of Data Points: 1000

parcorr
kcit_sw
kcit_hbe
rcot_hbe
rcot_sw
cmiknn

Figure 21: Structural Hamming Distance evaluation for CD-NOTS with different CI tests, tested out
on many different simulated datasets.
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D.2 Comparison against PCMCI
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Figure 22: F-score evaluation, comparing CD-NOTS and PCMCI, tested out on many different simu-
lated datasets.
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Figure 23: Precision evaluation, comparing CD-NOTS and PCMCI, tested out on many different
simulated datasets.
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Figure 24: Recall evaluation, comparing CD-NOTS and PCMCI, tested out on many different simu-
lated datasets.
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Figure 25: Structural Hamming Distance evaluation, comparing CD-NOTS and PCMCI, tested out
on many different simulated datasets.
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