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Abstract. Causal regularization solves several practical problems in
live trading applications: estimating price impact when alpha is un-
known and estimating alpha when price impact is unknown. In addition,
causal regularization increases the value of small A/B tests: one draws
more robust conclusions from smaller live trading experiments than tra-
ditional econometric methods. Requiring less A/B test data, trading
teams can run more live trading experiments and improve the perfor-
mance of more trading algorithms. Using a realistic order simulator, we
quantify these benefits for a canonical A/B trading experiment.

1. Introduction

The interplay of information and trading is critical to trade execution.
Practitioners refer to price moves caused by their trading as price impact
and price moves independent of their trading as alpha. As noted by [18]

“Large scale trading will often occur in the presence of mar-
ket drift (alpha) and the realized execution cost is a combi-
nation of alpha and the price impact” (p. 313, [18]).

An essential corollary is that trading causes price moves that otherwise
would not have happened. Successful investment strategies across all asset
classes trade to minimize the price impact and maximize the alpha during
trading.

Date: July 12, 2022.
Key words and phrases. Algorithmic trading; A/B Testing; Best execution; Optimal

execution; Trading; Transaction cost analysis.
1

Electronic copy available at: https://ssrn.com/abstract=4160945



2 BETTER A/B TESTING VIA CAUSAL REGULARIZATION

The vast literature on modelling market impact proposes functional forms
and describes statistical challenges for modeling price impact, including
(amongst many others)

• Lillo, Farmer, and Mantegna (2003)[11], Bouchaud et al. (2004)[4],
and Cont, Kukanov, and Stoikov (2014)[7] who use public trading
data to fit price impact models in both US and non-US equities.

• Almgren et al. (2005)[1] and Bershova and Rhakhlin (2013)[2] who
leverage proprietary orders from Citigroup US equity trading desks
and AllianceBernstein to apply price impact models to Transaction
Cost Analysis (TCA).

• Donier and Bonart (2015)[8] and Tomas, Matromatteo, and Benza-
quen (2021)[16, 17] who estimate standard price impact models on
bitcoin, fixed income, and derivatives products.

The literature highlights a crucial challenge when estimating impact: alpha
signals cause trades:

“The larger the volume Q of a metaorder, the more likely it
is to originate from a stronger prediction signal.” ([5] p. 238)

Bouchaud et al. (2018)[5] refer to this bias as “Prediction bias” (p. 238).
In Section 2 we provide a detailed instance of this bias and how it leads to
sub-optimal trading and lower P&L.

The industry standard for addressing this bias is through controlled live
trading experiments, such as A/B tests that randomize decisions. For ex-
ample, Bouchaud (2021)[3] leverages a year-long live trading experiment to
identify price impact without bias. A/B tests address trading biases but
present three downsides: First, one discards the bulk of their trading data.
Second, there are far fewer trades without alpha than with alpha, making
it challenging to estimate high dimensional models using machine learning.
Finally, the submission of alpha-less trades leads to additional trading costs.

The present article uses causal regularization, introduced by Janzing [9],
to address these shortcomings. This method improves upon traditional A/B
testing by analyzing both the unbiased A/B testing and biased trading data.
Figure 1 demonstrates this: in the left-hand panel, one uses the considerable
trading data to fit an impact model leading to a biased estimation with
small uncertainty. In the middle panel, one only uses unbiased data, which
naturally gives an unbiased estimate but with large uncertainty. Finally,
in the right-hand panel, causal inference blends both data, providing an
unbiased estimate with small uncertainty, giving the best of both.

Five further sections structure the article. Section 2 provides our motivat-
ing example, Section 3 introduces causal regularization, Section 4 describes
the simulations and experiments, Section 5 contains the results, and Sec-
tion 6 concludes. Finally, Appendix A outlines the application of causal
regularization to alpha research.
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Figure 1. Illustration of the bias and variance trade-off between data with
alpha (blue) and data without alpha (red). The last panel combines both
data through causal regularization.

2. A Motivating Example

As a stylized example, consider a trading strategy on the Russell 3000 uni-
verse. Each day the strategy uses an alpha model to predict future returns
across a subset of N < 3000 stocks, leading to a distribution αi ∼ N(µ, σ2

α)
of alpha signals. The trading strategy applies a portfolio optimization model.
The optimization considers alpha signals αi to submit orders of size xi. The
equation
(1) xi = γαi + νi

models the order sizes, with νi ∼ N(0, σ2
ν) and γ > 0.

The strategy trades orders of size xi over the day, for example, with a
VWAP algorithm, and the realized returns ri take the form

(2) ri = αi + σ sign(xi)
√

|xi| + εi

where εi ∼ N(0, σ2
ε), and the square root term represents the market impact

of trading an order of size xi.
The above structural model describes how alpha causes trades, and how

both alpha and trades cause price moves, in line with Bouchaud’s definition
of prediction bias. In the language of causal inference, this is a causal model,
which we illustrate in Figure 2.1

Two researchers study the trading strategy from opposing angles.

1See Section 2.2 “the causal discovery framework” (p. 43) of Pearl (2009)[12], for
mathematical definitions of causal structures and models.
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4 BETTER A/B TESTING VIA CAUSAL REGULARIZATION

Figure 2. Causal structure for trading involving an alpha
α causing an order of size x. Both α and x affect the returns
r.

(a) An execution researcher, charged with estimating the price impact
of trading an order of size x, runs the following regression without
intercept

ri ∗ sign(xi) ∼
√

|xi|.

The regression follows the industry practice of fitting realized signed
returns against the square root of the absolute order size. However,
the alpha biases the regression coefficient upwards due to its corre-
lation with the order’s size. This bias leads the execution researcher
to slow down trading and capture less P&L for the strategy.

(b) An alpha researcher, charged with estimating the actual value of
their alpha signals, runs the regression without intercept

ri ∼ αi.

Price impact biases the regression coefficient on α upward, leading
the alpha researcher to oversize their order and capture less P&L for
the strategy.

The problem faced by the execution researcher is due to a causal bias:
the hidden alpha α confounds the estimation of price impact, as it both
causes trades and price moves. This bias is only present because the execu-
tion researcher knows the alpha exists but does not observe it.2 Mitigating
this causal bias in estimating price impact is the main application of our
causal regularization method. Appendix A describes the problem the alpha
researcher faces.

2If the researcher observed the alpha, they could co-fit alpha and impact, leading to a
bias-free estimate of both. However, the execution researcher’s client is unlikely to share
the trade’s alpha.
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3. A/B testing and Causal regularization

Live trading experiments tackle trading biases, such as the prediction
bias from Section 2. For example, Bouchaud (2021)[3] leverages randomized
trades to estimate price impact without bias.

“We have actually shown that the short term impact of CFM’s
trades is indistinguishable [. . . ] from purely random trades
that were studied at CFM during a specifically designed ex-
perimental campaign in 2010-2011.” (p. 4)

The scale and length of CFM’s live trading experiment are impressive: sub-
mitting randomized trades is costly and maintaining a controlled experiment
for a whole year requires patience. Sotiropoulos and Battle (2017)[15] ob-
serve that for electronic brokers, such as Deutsche Bank, A/B experiments
are small to allow for “routine changes”(p. 5) and to control the live trading
experiment’s cost.

In a recent article, Janzing (2019)[9] observes a correspondence between
formulas for a finite-sample bias and a causal bias in a linear regression
framework. Janzing shows that regularization addresses more than finite-
sample biases. Indeed, regularization does not require specific assumptions
on the bias, simply that the testing data does not have the same bias as
the training data. Janzing’s insight [9] is that regularization reduces the
regression coefficient’s norm, mitigating causal bias in our model. Moreover,
the regularization parameter is commonly one-dimensional: one requires
significantly fewer data to calibrate it. Regularization leads to the best of
both method defined in Algorithm 1.

Algorithm 1 Causal Regularization
Inputs:

a. Observational Data: (yO, XO)
b. Interventional Data: (yI , XI)
c. Model w/ parameter β : M(β)
d. Fitting method with regularization parameter λ

Steps:

1. Use the fitting method to train βλ for all values of λ on the obser-
vational data (yO, XO).

2. Use the interventional data (yI , XI) as a testing set to tune the
optimal λ̂.

3. Use M(·, βλ̂) for predictions.

With our causal model and regularization algorithm in hand, we restate
the conclusions of Figure 1 using the terminology of causal machine learning.
Observational data refers to alpha-driven trades, and interventional data
refers to alpha-less trades, so that:
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6 BETTER A/B TESTING VIA CAUSAL REGULARIZATION

(a) The large observational data (blue data points) gives a biased esti-
mator with small variance (first panel).

(b) The smaller interventional data (red data points) gives an unbiased
estimator with large variance (second panel).

(c) Using causal regularization to train on the observational data and
tune the regularization parameter on the interventional data gives
the best outcome: an unbiased estimator with small variance (third
panel).

The assumption here is that, while the interventional data may not be
large enough to fit a high-dimensional model, it is large enough to de-bias
the model trained on observational data.3 The researcher establishes the
model’s shape via the training data, and the testing data removes the last
degree of freedom, λ. This approach blends the practical advantages of
both observational and interventional data. Notably, in trading applications,
observational data is plentiful but biased, and interventional data is scarce
but bias-free.

To illustrate the success of our method, we perform a simulation study
using Kolm and Westray’s order simulator [10]. Our large-scale simulation
study shows how even tiny interventions effectively control the bias and
variance of causal parameters, hence our use of more for less. Finally, one
can run more experiments in parallel as an additional practical benefit of
small interventions.

4. Experiment Description

Sotiropoulos and Battle (2017)[15] show that live trading experiments
are small. Consider again a situation where a firm has a trading universe
of the Russell 3000 index and suppose that they trade 1000 symbols daily,
leading to 250K orders annually. A starting point that may seem statistically
reasonable uses 10% of the order flow for A/B testing, yielding 25K orders in
interventional data over a year. However, while the data’s size is attractive,
this corresponds to over a month’s worth of unprofitable trades and requires
traders to maintain the same live trading experiment for a year. Such a
design is not realistic, so controlled live trading experiments are significantly
more modest in size and duration. For example, one may more realistically
allocate 3% of the orders over two months to the experiment, leading to
interventional data of 1.25K orders or 0.5% of the observational data’s size.

To rigorously assess our method, we need sizeable interventions to use
as proper out-of-sample data and to try various sizes for the live trading
experiment. Using such sizeable interventional data, we can measure our

3Rothenhäusler et al. (2020)[14] provide a method for dealing with the case where
bias-free data is unavailable for testing: regularization is achievable if the researcher col-
lects sufficient heterogeneous data through past experiments. Therefore, with causal reg-
ularization, a large history of heterogenous trading experiments may avoid the cost of
implementing a dedicated experiment for a new problem.
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method’s reduction in bias and variance across proposed experiment sizes.
Unfortunately, only a simulation can realistically achieve an intervention of
that size. Therefore, we leverage Kolm and Westray’s simulator framework
[10], which we briefly describe in Section 4.1.

4.1. Order Simulator. When attempting to simulate orders, they must
resemble real-life trades: we reproduce specific distributional properties and
stylized facts.

(1) Order size as an ADV percentage positively correlates with partici-
pation rate as a volume percentage.

(2) Order size negatively correlates with market capitalization.
(3) The distribution of realized trading rates follows a power law.

Kolm and Westray’s idea [10] is that, due to the prevalence of the Markowitz
approach to portfolio management and Mean-Variance Optimization, one
simulates realistic orders by first taking a set of alphas α and solving the
following portfolio optimization problem

max
x

α⊤(w + x) − λ(w + x)⊤Σ(w + x)
w + x ∈ C1, x ∈ C2

where w are the input portfolio weights, α the input alphas, Σ the stock
covariance matrix, and λ the risk aversion parameter. The sets C1&C2 rep-
resent the constraints.4 The resulting x are the required trades as a percent-
age of the portfolio notional. Looping over days and inserting new alphas
generates a series of trades/orders. In addition, we can create additional
orders by re-running the period with different alphas. As discussed above,
this allows us to generate arbitrary interventions and assess our results as
interventional data grows. Indeed, replicating this bootstrap would be pro-
hibitively expensive using live trading data only.

To construct the alphas, we use the idea of bootstrap alphas. For a given
day, for each stock indexed by i, we generate the vector of alphas

αi = ρri +
√

1 − ρ2Zi, Zi ∼ N(0, σ2
i )

where ri and σ2
i are the stock’s return and variance. We take the variance

from the Northfield risk model. Choosing ρ = 0 provides alpha-less trades,
and, more generally, ρ controls the strategy’s profitability. We choose ρ such
that the strategy’s realized IC is around 5%. We choose the constituents
of IWV, the iShares Russell 3000 ETF, as our trading universe to have the
widest cross-section of stocks for our results.5

Because they are a mixture of actual returns and noise, the synthetic
alphas have lower autocorrelation than in real-life. In addition, the objective
does not consider transaction costs: this simulation over-trades compared
to an actual portfolio. However, the vital observation is that, for the study

4We use a 5x leverage constraint and force the portfolio to be sector & delta neutral.
5The reader finds full details, including constituents, at iShares Russell 3000 ETF.
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8 BETTER A/B TESTING VIA CAUSAL REGULARIZATION

of price impact, we are not interested in precise portfolio characteristics,
only resulting trades. [10] show that the simulated trades follow all essential
stylized facts, and this property is all our study requires to assess price
impact estimators.

4.2. Methodology. In this section, we describe three fitting methods, il-
lustrated on the example from Section 2, using the simulated data from
Section 4.

Using the order simulator, we generate:
(O) An extensive set of 2.5 million orders with alpha.
(I) Smaller sets of interventional alpha-less orders. Each interventional

data emulates a live A/B-test limited in size and duration: they
range from n = 250, representing 0.01% of the observational data
size, to n = 12500, representing 0.5% of the observational data size.6

(V) An extensive set of 2.5 million alpha-less orders as validation data.
Data (O) emulates a deep history of observational data that a trading

team may have built up over years of trading. Unfortunately, (O) contains
an unknown bias due to the orders’ alpha. Finally, data (V) does not have
a cost-effective counterpart in real-life and simply serves as a simulation of
the true out-of-sample for the price impact model.

For each order, we simulate price impact using three models from the
literature: the original model proposed by Almgren et al. (2005)[1], the
power-law model from Zarinelli et al. (2015)[20], and the square-root model
from Bucci et al. (2018)[6]. Given a sample for (O), (I), and (V), a price
impact model I, and a set of historical returns r̃i, we construct synthetic
returns ri that contain the impact of the simulated orders via the formula

(3) ri = I(xi) + r̃i.

We define the linear regression model

(4) ri = βI(xi) + εi.

When the fitted model perfectly recovers the impact parameter β = 1, the
residuals ϵi match the historical returns r̃i from which we constructed our
synthetic returns.7

We fit the model in three ways.

(1) We fit using observational data: a least-squares regression runs on
(O).

6For example, while the trading team can leverage years of past (observational) trading
data, A/B tests typically are only launched after proposing an experiment: therefore, their
histories are short. The data is also limited in size by cost considerations: a well-designed
controlled experiment randomizes key trading variables, leading to additional trading costs
or opportunity losses.

7In a real-life setting, the residuals ϵi correspond to the impact-adjusted returns the
alpha model predicts.
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(2) We fit using interventional data: a least-square regression runs on
(I).

(3) We fit using causal regularization: a ridge regression runs on the
observational data (O), and the ridge meta-parameter maximizes
the R2 on the interventional data (I).

Remark 4.1 (Precision vs. Accuracy). The regression with observational
data only is the most precise, given the orders of magnitude more data it
has available. For example, the confidence interval for the observational data
(O) is

√
200 ≈ 14 times tighter than for the interventional data (I) of size

n = 12500, assuming the Central Limit Theorem applies.
Due to the interventional data being bias-free, the regression on (I) is sig-

nificantly less precise but more accurate. We show that causal regularization
is both precise and accurate, even for tiny sizes of the interventional data
(I).

Repeating the procedure with independent samples generates many pa-
rameter estimates and bootstraps the parameter distribution for each method.
Finally, to assess the three fitting techniques, we introduce three perfor-
mance metrics.

(1) The bias of the parameter estimate. Given that we know the actual
value of the price impact parameter, we can quantify the bias of the
parameter estimate for each method. The bias measures the model’s
inaccuracy.

(2) The t-stat of the parameter estimate. We compute the t-stat for each
method from the bootstrapped distribution. The t-stat measures the
model’s precision.

(3) The validation R2 of the model. Evaluating the models on data (I)
unfairly biases the method based on interventional data only and
produces a noisy evaluation. Instead, we leverage the validation
data (V), which has the same size as the observational data and is
bias-free, to compute each model’s validation R2.

One can only realistically estimate the above performance metrics in sim-
ulation: the bootstrap methodology and the validation data require an im-
practical number of interventions for a team to replicate in live trading.
Therefore, the simulation environment from Section 4 plays a crucial role in
assessing experimental designs and statistical methods.

5. Results

We first describe the simulated orders. Table 1 summarizes the distri-
bution of the order size (ADV%), stock market capitalization, and order
speed (Participation of Volume, PoV%). Figure 3 highlights the correlation
between the three essential variables in the order set. Figure 4 provides
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the sampling distributions of the sizes and PoVs used for the calculations.
First,the Mean-Variance Optimization’s constraints bound the order size
and speed. Second, order size and speed correlate: the larger the order,
the faster the execution to attain the desired position promptly. Finally,
the traded stocks’ market capitalization presents a heavy tail and a neg-
ative correlation with order size: the mean-variance optimization problem
submits smaller orders on more liquid names.

Quantile ADV(%) Mkt Cap(bil) PoV (%)
0.0-0.2 (ADV%) 0.1 25.7 4.1
0.2-0.4 (ADV%) 0.4 14.8 4.2
0.4-0.6 (ADV%) 1.0 9.3 4.6
0.6-0.8 (ADV%) 1.8 6.2 5.2
0.8-1.0 (ADV%) 3.2 4.2 6.7

0.0-0.2 (Mkt Cap) 1.0 0.3 4.7
0.2-0.4 (Mkt Cap) 1.4 0.9 5.0
0.4-0.6 (Mkt Cap) 1.6 2.1 5.2
0.6-0.8 (Mkt Cap) 1.5 5.3 5.2
0.8-1.0 (Mkt Cap) 1.0 51.7 4.7

0.0-0.2 (PoV%) 0.9 16.6 2.2
0.2-0.4 (PoV%) 1.0 13.0 2.8
0.4-0.6 (PoV%) 1.2 11.1 3.8
0.6-0.8 (PoV%) 1.5 10.1 5.7
0.8-1.0 (PoV%) 1.9 9.5 10.2

Table 1. Summary statistics of the simulated orders. Each
column represents the average of a metric over a given quan-
tile. The first column of each row specifies the quantile.

The reader finds the results of the three estimation methods in Figure 5
and Table 2. The figure shows the distribution of empirical β as we evaluate
different interventional data (I) and estimation techniques. In addition, the
table provides the bias and t-stat of the fitted β and the R2 on the validation
data (V).

As expected, the observational data provides a precise but biased estimate
of β. For small experiments, using interventional data provides a noisy but
unbiased estimator. The method becomes precise once the intervention size
reaches 12500 randomized trades. Figure 5 illustrates how causal regular-
ization achieves a tighter distribution of empirical β for a given experiment
size. The results are robust across all three impact models.

Causal regularization achieves unbiased, precise measurements using an
order of magnitude less randomized trades. For example, the causal regu-
larization estimator with n = 250 randomized trades outperforms the naive
estimator with n = 1250 randomized trades.
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Figure 5. KDE plots of the simulated regression betas: the columns repre-
sent different price impact models. The rows represent assorted intervention
sizes. The actual value is β = 1. Betas from fits on the interventional data
alone are in blue and from the causal regularization approach in green.
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Intervention size Fitting method Bias t-stat R2(V )
0% Observational data only 0.319 30.2 70bps

0.01% Interventional data only -0.010 0.92 -10bps
0.01% Causal regularization -0.010 3.32 70bps
0.05% Interventional data only 0.05 2.40 63bps
0.05% Causal regularization 0.01 4.12 72bps
0.5% Interventional data only -0.002 6.38 75bps
0.5% Causal regularization -0.005 6.66 75bps

Table 2. Statistical results across fitting methods and with
intervention sizes ranging across 0.01% (n = 250 randomized
trades), 0.05% (n = 1250 randomized trades), and 0.5% (n =
12500 randomized trades) of the observational data.
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6. Conclusion

This article revisits A/B testing in a trading context. When designing live
trading experiments, the critical trade-off is best described using the lan-
guage of causal inference: observational data is plentiful but biased, while
interventional data is bias-free but scarce. The authors find causal machine
learning particularly well-suited for trading applications and hope that quan-
titative Finance follows the Technology industry in applying these methods
to real-life problems. The Microsoft Research Summit of 2021[13] had over a
dozen talks within its causal machine learning track, one of its seven science
tracks.

“This track focuses on emerging causal machine learning
technologies and the opportunities for practical impact at
the intersection of academia and industry, with contributions
from researchers at Microsoft and the broader academic and
industrial research communities.”

Causal inference is not only well-suited to describe the trade-off inherent
to A/B testing: causal machine learning methods also significantly outper-
form traditional econometric techniques in the data regime most common
in trading. We illustrate this via a rigorous and extensive simulation ex-
periment for trading. We show that a trading experiment with only 250
randomized trades using our causal regularization method outperforms a
standard A-B test with 1250 randomized trades.

In a well-controlled simulation environment, the paper presents a con-
crete, robust analysis of causal regularization’s benefits to the bias-free es-
timation of price impact. The range of applications is significantly broader,
see, for instance, Appendix A on alpha research, and likely to increase with
continued demand for A/B testing in a trading and best execution context.
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Appendix A. A second use-case

In this appendix, we revisit the motivating example in section 2 from an
alpha researcher’s point of view . Recall that the returns follow the model

(5) ri = αi + σ sign(xi)
√

|xi| + εi

where r are the observed returns, α the alpha researcher’s signal, and
σ sign(x)

√
|x| the price impact of the strategy’s historical orders.

Imagine a scenario where an alpha researcher does not collect their own
trading data but relies on a third party, for example, a broker, to capture
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their trading data and estimate its price impact. The alpha researcher knows
that the historical regression

ri ∼ αi.

is biased due to the presence of price impact. Waelbroeck et al. (2012)[19]
propose a method to remove this bias under a given choice of price impact
model:

“the system may estimate corrected market prices that would
have been observed had price impact not existed” ([19] p. 11)

In Waelbroeck’s solution, the alpha researcher takes the price impact model
from their broker at face value and, for our square root impact model, runs
the regression

ri − βσ sign(xi)
√

|xi| ∼ αi.

An alpha researcher can implement Algorithm 2 by Waelbroeck et al. (2012)[19].

Algorithm 2 Waelbroeck’s price impact adjustment algorithm
Inputs:

a. Alphas αi

b. Observed returns ri

c. Price impact quoted by third-party Ii

Steps:

1. Compute corrected market returns r̃i = ri − Ii

2. Regress r̃i ∼ αi.

But what if the alpha researcher wants to fit their alpha free of a partic-
ular price impact model? An alpha researcher using causal regularization
Algorithm 3 can fit their alphas without depending on a third party’s price
impact model.

Algorithm 3 Causal regularization for alpha research
Inputs:

a. Alphas αi

b. Observed returns ri

c. A randomized set I of unsubmitted trades i

Steps:

1. Define I as the interventional data and its complement O as the
observational data.

2. Apply the causal regularization algorithm 1 to the linear regression
ri ∼ αi.
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To use Algorithm 3, an alpha researcher randomly sets aside a small
set of names and disables their trading strategy on those names. The al-
pha researcher then monitors the returns of these unsubmitted trades to
tune their regularization penalty. The causal regularization algorithm, Al-
gorithm 3, calibrates the correct ridge parameter for the researcher’s alpha
model based on this bias-free data. In conclusion, the algorithm considers
the confounding effect of price impact in a model-free way, reducing the
researcher’s reliance on broker data and models.

The researcher cannot practically implement this approach without causal
regularization: the opportunity cost of not submitting profitable trades is
prohibitively high. Unfortunately, standard econometric techniques demand
enormous interventional data. But causal regularization gets more for less
and adjusts alpha for price impact in a model-free way with minimal oppor-
tunity costs.
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